Properties

Label 810.4.a
Level 810810
Weight 44
Character orbit 810.a
Rep. character χ810(1,)\chi_{810}(1,\cdot)
Character field Q\Q
Dimension 4848
Newform subspaces 2222
Sturm bound 648648
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 810.a (trivial)
Character field: Q\Q
Newform subspaces: 22 22
Sturm bound: 648648
Trace bound: 77
Distinguishing TpT_p: 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(810))M_{4}(\Gamma_0(810)).

Total New Old
Modular forms 510 48 462
Cusp forms 462 48 414
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223355FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++67676661616161665555660066
++++--62625557575656555151660066
++-++-61616655555555664949660066
++--++65657758585959775252660066
-++++-64645559595858555353660066
-++-++65658857575959885151660066
--++++64647757575858775151660066
----62624458585656445252660066
Plus space++261261282823323323723728282092092424002424
Minus space-249249202022922922522520202052052424002424

Trace form

48q+192q448q7+96q13+768q16+60q1972q22+1200q25192q28120q31+360q34+672q37+852q43504q46+2916q49+384q52+2436q61++6756q97+O(q100) 48 q + 192 q^{4} - 48 q^{7} + 96 q^{13} + 768 q^{16} + 60 q^{19} - 72 q^{22} + 1200 q^{25} - 192 q^{28} - 120 q^{31} + 360 q^{34} + 672 q^{37} + 852 q^{43} - 504 q^{46} + 2916 q^{49} + 384 q^{52} + 2436 q^{61}+ \cdots + 6756 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(810))S_{4}^{\mathrm{new}}(\Gamma_0(810)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 5
810.4.a.a 810.a 1.a 11 47.79247.792 Q\Q None 810.4.a.a 2-2 00 55 28-28 ++ ++ - SU(2)\mathrm{SU}(2) q2q2+4q4+5q528q78q8+q-2q^{2}+4q^{4}+5q^{5}-28q^{7}-8q^{8}+\cdots
810.4.a.b 810.a 1.a 11 47.79247.792 Q\Q None 90.4.e.a 2-2 00 55 16-16 ++ - - SU(2)\mathrm{SU}(2) q2q2+4q4+5q524q78q8+q-2q^{2}+4q^{4}+5q^{5}-2^{4}q^{7}-8q^{8}+\cdots
810.4.a.c 810.a 1.a 11 47.79247.792 Q\Q None 810.4.a.c 2-2 00 55 22 ++ ++ - SU(2)\mathrm{SU}(2) q2q2+4q4+5q5+2q78q8+q-2q^{2}+4q^{4}+5q^{5}+2q^{7}-8q^{8}+\cdots
810.4.a.d 810.a 1.a 11 47.79247.792 Q\Q None 810.4.a.a 22 00 5-5 28-28 - ++ ++ SU(2)\mathrm{SU}(2) q+2q2+4q45q528q7+8q8+q+2q^{2}+4q^{4}-5q^{5}-28q^{7}+8q^{8}+\cdots
810.4.a.e 810.a 1.a 11 47.79247.792 Q\Q None 90.4.e.a 22 00 5-5 16-16 - ++ ++ SU(2)\mathrm{SU}(2) q+2q2+4q45q524q7+8q8+q+2q^{2}+4q^{4}-5q^{5}-2^{4}q^{7}+8q^{8}+\cdots
810.4.a.f 810.a 1.a 11 47.79247.792 Q\Q None 810.4.a.c 22 00 5-5 22 - ++ ++ SU(2)\mathrm{SU}(2) q+2q2+4q45q5+2q7+8q8+q+2q^{2}+4q^{4}-5q^{5}+2q^{7}+8q^{8}+\cdots
810.4.a.g 810.a 1.a 22 47.79247.792 Q(3)\Q(\sqrt{3}) None 810.4.a.g 4-4 00 10-10 26-26 ++ - ++ SU(2)\mathrm{SU}(2) q2q2+4q45q5+(13+β)q7+q-2q^{2}+4q^{4}-5q^{5}+(-13+\beta )q^{7}+\cdots
810.4.a.h 810.a 1.a 22 47.79247.792 Q(3081)\Q(\sqrt{3081}) None 810.4.a.h 4-4 00 10-10 5-5 ++ ++ ++ SU(2)\mathrm{SU}(2) q2q2+4q45q5+(2β)q7+q-2q^{2}+4q^{4}-5q^{5}+(-2-\beta )q^{7}+\cdots
810.4.a.i 810.a 1.a 22 47.79247.792 Q(6)\Q(\sqrt{6}) None 90.4.e.c 4-4 00 10-10 2-2 ++ ++ ++ SU(2)\mathrm{SU}(2) q2q2+4q45q5+(1+7β)q7+q-2q^{2}+4q^{4}-5q^{5}+(-1+7\beta )q^{7}+\cdots
810.4.a.j 810.a 1.a 22 47.79247.792 Q(489)\Q(\sqrt{489}) None 810.4.a.j 4-4 00 10-10 77 ++ ++ ++ SU(2)\mathrm{SU}(2) q2q2+4q45q5+(4β)q78q8+q-2q^{2}+4q^{4}-5q^{5}+(4-\beta )q^{7}-8q^{8}+\cdots
810.4.a.k 810.a 1.a 22 47.79247.792 Q(15)\Q(\sqrt{15}) None 90.4.e.b 4-4 00 1010 1616 ++ - - SU(2)\mathrm{SU}(2) q2q2+4q4+5q5+(8+β)q78q8+q-2q^{2}+4q^{4}+5q^{5}+(8+\beta )q^{7}-8q^{8}+\cdots
810.4.a.l 810.a 1.a 22 47.79247.792 Q(15)\Q(\sqrt{15}) None 90.4.e.b 44 00 10-10 1616 - ++ ++ SU(2)\mathrm{SU}(2) q+2q2+4q45q5+(8+β)q7+8q8+q+2q^{2}+4q^{4}-5q^{5}+(8+\beta )q^{7}+8q^{8}+\cdots
810.4.a.m 810.a 1.a 22 47.79247.792 Q(3)\Q(\sqrt{3}) None 810.4.a.g 44 00 1010 26-26 - - - SU(2)\mathrm{SU}(2) q+2q2+4q4+5q5+(13+β)q7+q+2q^{2}+4q^{4}+5q^{5}+(-13+\beta )q^{7}+\cdots
810.4.a.n 810.a 1.a 22 47.79247.792 Q(3081)\Q(\sqrt{3081}) None 810.4.a.h 44 00 1010 5-5 - ++ - SU(2)\mathrm{SU}(2) q+2q2+4q4+5q5+(2β)q7+q+2q^{2}+4q^{4}+5q^{5}+(-2-\beta )q^{7}+\cdots
810.4.a.o 810.a 1.a 22 47.79247.792 Q(6)\Q(\sqrt{6}) None 90.4.e.c 44 00 1010 2-2 - - - SU(2)\mathrm{SU}(2) q+2q2+4q4+5q5+(1+7β)q7+q+2q^{2}+4q^{4}+5q^{5}+(-1+7\beta )q^{7}+\cdots
810.4.a.p 810.a 1.a 22 47.79247.792 Q(489)\Q(\sqrt{489}) None 810.4.a.j 44 00 1010 77 - ++ - SU(2)\mathrm{SU}(2) q+2q2+4q4+5q5+(4β)q7+8q8+q+2q^{2}+4q^{4}+5q^{5}+(4-\beta )q^{7}+8q^{8}+\cdots
810.4.a.q 810.a 1.a 33 47.79247.792 3.3.3732.1 None 90.4.e.d 6-6 00 1515 33 ++ ++ - SU(2)\mathrm{SU}(2) q2q2+4q4+5q5+(12β1+β2)q7+q-2q^{2}+4q^{4}+5q^{5}+(1-2\beta _{1}+\beta _{2})q^{7}+\cdots
810.4.a.r 810.a 1.a 33 47.79247.792 3.3.3732.1 None 90.4.e.d 66 00 15-15 33 - - ++ SU(2)\mathrm{SU}(2) q+2q2+4q45q5+(12β1+β2)q7+q+2q^{2}+4q^{4}-5q^{5}+(1-2\beta _{1}+\beta _{2})q^{7}+\cdots
810.4.a.s 810.a 1.a 44 47.79247.792 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 90.4.e.e 8-8 00 20-20 2323 ++ - ++ SU(2)\mathrm{SU}(2) q2q2+4q45q5+(6+β1)q7+q-2q^{2}+4q^{4}-5q^{5}+(6+\beta _{1})q^{7}+\cdots
810.4.a.t 810.a 1.a 44 47.79247.792 4.4.8657424.2 None 810.4.a.t 8-8 00 2020 22 ++ - - SU(2)\mathrm{SU}(2) q2q2+4q4+5q5+(1+β1+β3)q7+q-2q^{2}+4q^{4}+5q^{5}+(1+\beta _{1}+\beta _{3})q^{7}+\cdots
810.4.a.u 810.a 1.a 44 47.79247.792 4.4.8657424.2 None 810.4.a.t 88 00 20-20 22 - - ++ SU(2)\mathrm{SU}(2) q+2q2+4q45q5+(1+β1+β3)q7+q+2q^{2}+4q^{4}-5q^{5}+(1+\beta _{1}+\beta _{3})q^{7}+\cdots
810.4.a.v 810.a 1.a 44 47.79247.792 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 90.4.e.e 88 00 2020 2323 - ++ - SU(2)\mathrm{SU}(2) q+2q2+4q4+5q5+(6+β1)q7+q+2q^{2}+4q^{4}+5q^{5}+(6+\beta _{1})q^{7}+\cdots

Decomposition of S4old(Γ0(810))S_{4}^{\mathrm{old}}(\Gamma_0(810)) into lower level spaces

S4old(Γ0(810)) S_{4}^{\mathrm{old}}(\Gamma_0(810)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))10^{\oplus 10}\oplusS4new(Γ0(6))S_{4}^{\mathrm{new}}(\Gamma_0(6))8^{\oplus 8}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))12^{\oplus 12}\oplusS4new(Γ0(10))S_{4}^{\mathrm{new}}(\Gamma_0(10))5^{\oplus 5}\oplusS4new(Γ0(15))S_{4}^{\mathrm{new}}(\Gamma_0(15))8^{\oplus 8}\oplusS4new(Γ0(18))S_{4}^{\mathrm{new}}(\Gamma_0(18))6^{\oplus 6}\oplusS4new(Γ0(27))S_{4}^{\mathrm{new}}(\Gamma_0(27))8^{\oplus 8}\oplusS4new(Γ0(30))S_{4}^{\mathrm{new}}(\Gamma_0(30))4^{\oplus 4}\oplusS4new(Γ0(45))S_{4}^{\mathrm{new}}(\Gamma_0(45))6^{\oplus 6}\oplusS4new(Γ0(54))S_{4}^{\mathrm{new}}(\Gamma_0(54))4^{\oplus 4}\oplusS4new(Γ0(81))S_{4}^{\mathrm{new}}(\Gamma_0(81))4^{\oplus 4}\oplusS4new(Γ0(90))S_{4}^{\mathrm{new}}(\Gamma_0(90))3^{\oplus 3}\oplusS4new(Γ0(135))S_{4}^{\mathrm{new}}(\Gamma_0(135))4^{\oplus 4}\oplusS4new(Γ0(162))S_{4}^{\mathrm{new}}(\Gamma_0(162))2^{\oplus 2}\oplusS4new(Γ0(270))S_{4}^{\mathrm{new}}(\Gamma_0(270))2^{\oplus 2}\oplusS4new(Γ0(405))S_{4}^{\mathrm{new}}(\Gamma_0(405))2^{\oplus 2}