Properties

Label 810.4.a
Level $810$
Weight $4$
Character orbit 810.a
Rep. character $\chi_{810}(1,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $22$
Sturm bound $648$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(648\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(810))\).

Total New Old
Modular forms 510 48 462
Cusp forms 462 48 414
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(5\)
\(+\)\(-\)\(+\)\(-\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(7\)
\(-\)\(+\)\(+\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(8\)
\(-\)\(-\)\(+\)\(+\)\(7\)
\(-\)\(-\)\(-\)\(-\)\(4\)
Plus space\(+\)\(28\)
Minus space\(-\)\(20\)

Trace form

\( 48 q + 192 q^{4} - 48 q^{7} + 96 q^{13} + 768 q^{16} + 60 q^{19} - 72 q^{22} + 1200 q^{25} - 192 q^{28} - 120 q^{31} + 360 q^{34} + 672 q^{37} + 852 q^{43} - 504 q^{46} + 2916 q^{49} + 384 q^{52} + 2436 q^{61}+ \cdots + 6756 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(810))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
810.4.a.a 810.a 1.a $1$ $47.792$ \(\Q\) None 810.4.a.a \(-2\) \(0\) \(5\) \(-28\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}-28q^{7}-8q^{8}+\cdots\)
810.4.a.b 810.a 1.a $1$ $47.792$ \(\Q\) None 90.4.e.a \(-2\) \(0\) \(5\) \(-16\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}-2^{4}q^{7}-8q^{8}+\cdots\)
810.4.a.c 810.a 1.a $1$ $47.792$ \(\Q\) None 810.4.a.c \(-2\) \(0\) \(5\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}+2q^{7}-8q^{8}+\cdots\)
810.4.a.d 810.a 1.a $1$ $47.792$ \(\Q\) None 810.4.a.a \(2\) \(0\) \(-5\) \(-28\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-5q^{5}-28q^{7}+8q^{8}+\cdots\)
810.4.a.e 810.a 1.a $1$ $47.792$ \(\Q\) None 90.4.e.a \(2\) \(0\) \(-5\) \(-16\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-5q^{5}-2^{4}q^{7}+8q^{8}+\cdots\)
810.4.a.f 810.a 1.a $1$ $47.792$ \(\Q\) None 810.4.a.c \(2\) \(0\) \(-5\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-5q^{5}+2q^{7}+8q^{8}+\cdots\)
810.4.a.g 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{3}) \) None 810.4.a.g \(-4\) \(0\) \(-10\) \(-26\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-5q^{5}+(-13+\beta )q^{7}+\cdots\)
810.4.a.h 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{3081}) \) None 810.4.a.h \(-4\) \(0\) \(-10\) \(-5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-5q^{5}+(-2-\beta )q^{7}+\cdots\)
810.4.a.i 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{6}) \) None 90.4.e.c \(-4\) \(0\) \(-10\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-5q^{5}+(-1+7\beta )q^{7}+\cdots\)
810.4.a.j 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{489}) \) None 810.4.a.j \(-4\) \(0\) \(-10\) \(7\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-5q^{5}+(4-\beta )q^{7}-8q^{8}+\cdots\)
810.4.a.k 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{15}) \) None 90.4.e.b \(-4\) \(0\) \(10\) \(16\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}+(8+\beta )q^{7}-8q^{8}+\cdots\)
810.4.a.l 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{15}) \) None 90.4.e.b \(4\) \(0\) \(-10\) \(16\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-5q^{5}+(8+\beta )q^{7}+8q^{8}+\cdots\)
810.4.a.m 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{3}) \) None 810.4.a.g \(4\) \(0\) \(10\) \(-26\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+5q^{5}+(-13+\beta )q^{7}+\cdots\)
810.4.a.n 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{3081}) \) None 810.4.a.h \(4\) \(0\) \(10\) \(-5\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+5q^{5}+(-2-\beta )q^{7}+\cdots\)
810.4.a.o 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{6}) \) None 90.4.e.c \(4\) \(0\) \(10\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+5q^{5}+(-1+7\beta )q^{7}+\cdots\)
810.4.a.p 810.a 1.a $2$ $47.792$ \(\Q(\sqrt{489}) \) None 810.4.a.j \(4\) \(0\) \(10\) \(7\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+5q^{5}+(4-\beta )q^{7}+8q^{8}+\cdots\)
810.4.a.q 810.a 1.a $3$ $47.792$ 3.3.3732.1 None 90.4.e.d \(-6\) \(0\) \(15\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}+(1-2\beta _{1}+\beta _{2})q^{7}+\cdots\)
810.4.a.r 810.a 1.a $3$ $47.792$ 3.3.3732.1 None 90.4.e.d \(6\) \(0\) \(-15\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-5q^{5}+(1-2\beta _{1}+\beta _{2})q^{7}+\cdots\)
810.4.a.s 810.a 1.a $4$ $47.792$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 90.4.e.e \(-8\) \(0\) \(-20\) \(23\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-5q^{5}+(6+\beta _{1})q^{7}+\cdots\)
810.4.a.t 810.a 1.a $4$ $47.792$ 4.4.8657424.2 None 810.4.a.t \(-8\) \(0\) \(20\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}+(1+\beta _{1}+\beta _{3})q^{7}+\cdots\)
810.4.a.u 810.a 1.a $4$ $47.792$ 4.4.8657424.2 None 810.4.a.t \(8\) \(0\) \(-20\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-5q^{5}+(1+\beta _{1}+\beta _{3})q^{7}+\cdots\)
810.4.a.v 810.a 1.a $4$ $47.792$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 90.4.e.e \(8\) \(0\) \(20\) \(23\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+5q^{5}+(6+\beta _{1})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(810))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(810)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(270))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(405))\)\(^{\oplus 2}\)