Properties

Label 8112.2
Level 8112
Weight 2
Dimension 755699
Nonzero newspaces 56
Sturm bound 7268352

Downloads

Learn more

Defining parameters

Level: N N = 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
Weight: k k = 2 2
Nonzero newspaces: 56 56
Sturm bound: 72683527268352

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(8112))M_{2}(\Gamma_1(8112)).

Total New Old
Modular forms 1829856 759379 1070477
Cusp forms 1804321 755699 1048622
Eisenstein series 25535 3680 21855

Decomposition of S2new(Γ1(8112))S_{2}^{\mathrm{new}}(\Gamma_1(8112))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
8112.2.a χ8112(1,)\chi_{8112}(1, \cdot) 8112.2.a.a 1 1
8112.2.a.b 1
8112.2.a.c 1
8112.2.a.d 1
8112.2.a.e 1
8112.2.a.f 1
8112.2.a.g 1
8112.2.a.h 1
8112.2.a.i 1
8112.2.a.j 1
8112.2.a.k 1
8112.2.a.l 1
8112.2.a.m 1
8112.2.a.n 1
8112.2.a.o 1
8112.2.a.p 1
8112.2.a.q 1
8112.2.a.r 1
8112.2.a.s 1
8112.2.a.t 1
8112.2.a.u 1
8112.2.a.v 1
8112.2.a.w 1
8112.2.a.x 1
8112.2.a.y 1
8112.2.a.z 1
8112.2.a.ba 1
8112.2.a.bb 1
8112.2.a.bc 1
8112.2.a.bd 1
8112.2.a.be 1
8112.2.a.bf 1
8112.2.a.bg 1
8112.2.a.bh 1
8112.2.a.bi 1
8112.2.a.bj 2
8112.2.a.bk 2
8112.2.a.bl 2
8112.2.a.bm 2
8112.2.a.bn 2
8112.2.a.bo 2
8112.2.a.bp 2
8112.2.a.bq 2
8112.2.a.br 2
8112.2.a.bs 2
8112.2.a.bt 2
8112.2.a.bu 2
8112.2.a.bv 2
8112.2.a.bw 2
8112.2.a.bx 2
8112.2.a.by 3
8112.2.a.bz 3
8112.2.a.ca 3
8112.2.a.cb 3
8112.2.a.cc 3
8112.2.a.cd 3
8112.2.a.ce 3
8112.2.a.cf 3
8112.2.a.cg 3
8112.2.a.ch 3
8112.2.a.ci 3
8112.2.a.cj 3
8112.2.a.ck 3
8112.2.a.cl 3
8112.2.a.cm 3
8112.2.a.cn 3
8112.2.a.co 3
8112.2.a.cp 3
8112.2.a.cq 4
8112.2.a.cr 4
8112.2.a.cs 4
8112.2.a.ct 6
8112.2.a.cu 6
8112.2.a.cv 6
8112.2.a.cw 6
8112.2.c χ8112(337,)\chi_{8112}(337, \cdot) n/a 154 1
8112.2.d χ8112(7775,)\chi_{8112}(7775, \cdot) n/a 310 1
8112.2.g χ8112(4057,)\chi_{8112}(4057, \cdot) None 0 1
8112.2.h χ8112(4055,)\chi_{8112}(4055, \cdot) None 0 1
8112.2.j χ8112(3719,)\chi_{8112}(3719, \cdot) None 0 1
8112.2.m χ8112(4393,)\chi_{8112}(4393, \cdot) None 0 1
8112.2.n χ8112(8111,)\chi_{8112}(8111, \cdot) n/a 308 1
8112.2.q χ8112(529,)\chi_{8112}(529, \cdot) n/a 308 2
8112.2.r χ8112(3619,)\chi_{8112}(3619, \cdot) n/a 1232 2
8112.2.u χ8112(1253,)\chi_{8112}(1253, \cdot) n/a 2424 2
8112.2.v χ8112(2027,)\chi_{8112}(2027, \cdot) n/a 2424 2
8112.2.x χ8112(2029,)\chi_{8112}(2029, \cdot) n/a 1240 2
8112.2.bb χ8112(775,)\chi_{8112}(775, \cdot) None 0 2
8112.2.bc χ8112(4831,)\chi_{8112}(4831, \cdot) n/a 308 2
8112.2.bf χ8112(2465,)\chi_{8112}(2465, \cdot) n/a 596 2
8112.2.bg χ8112(6521,)\chi_{8112}(6521, \cdot) None 0 2
8112.2.bh χ8112(1691,)\chi_{8112}(1691, \cdot) n/a 2436 2
8112.2.bj χ8112(2365,)\chi_{8112}(2365, \cdot) n/a 1232 2
8112.2.bm χ8112(437,)\chi_{8112}(437, \cdot) n/a 2424 2
8112.2.bn χ8112(2803,)\chi_{8112}(2803, \cdot) n/a 1232 2
8112.2.bq χ8112(23,)\chi_{8112}(23, \cdot) None 0 2
8112.2.br χ8112(4585,)\chi_{8112}(4585, \cdot) None 0 2
8112.2.bu χ8112(191,)\chi_{8112}(191, \cdot) n/a 616 2
8112.2.bv χ8112(4417,)\chi_{8112}(4417, \cdot) n/a 308 2
8112.2.bz χ8112(4079,)\chi_{8112}(4079, \cdot) n/a 616 2
8112.2.ca χ8112(361,)\chi_{8112}(361, \cdot) None 0 2
8112.2.cd χ8112(4247,)\chi_{8112}(4247, \cdot) None 0 2
8112.2.ce χ8112(5765,)\chi_{8112}(5765, \cdot) n/a 4848 4
8112.2.ch χ8112(19,)\chi_{8112}(19, \cdot) n/a 2464 4
8112.2.cj χ8112(1837,)\chi_{8112}(1837, \cdot) n/a 2464 4
8112.2.cl χ8112(1667,)\chi_{8112}(1667, \cdot) n/a 4848 4
8112.2.cm χ8112(89,)\chi_{8112}(89, \cdot) None 0 4
8112.2.cn χ8112(1601,)\chi_{8112}(1601, \cdot) n/a 1192 4
8112.2.cq χ8112(319,)\chi_{8112}(319, \cdot) n/a 616 4
8112.2.cr χ8112(2455,)\chi_{8112}(2455, \cdot) None 0 4
8112.2.cv χ8112(2005,)\chi_{8112}(2005, \cdot) n/a 2464 4
8112.2.cx χ8112(1499,)\chi_{8112}(1499, \cdot) n/a 4848 4
8112.2.cz χ8112(4075,)\chi_{8112}(4075, \cdot) n/a 2464 4
8112.2.da χ8112(1709,)\chi_{8112}(1709, \cdot) n/a 4848 4
8112.2.dc χ8112(625,)\chi_{8112}(625, \cdot) n/a 2184 12
8112.2.df χ8112(623,)\chi_{8112}(623, \cdot) n/a 4368 12
8112.2.dg χ8112(25,)\chi_{8112}(25, \cdot) None 0 12
8112.2.dj χ8112(599,)\chi_{8112}(599, \cdot) None 0 12
8112.2.dl χ8112(311,)\chi_{8112}(311, \cdot) None 0 12
8112.2.dm χ8112(313,)\chi_{8112}(313, \cdot) None 0 12
8112.2.dp χ8112(287,)\chi_{8112}(287, \cdot) n/a 4368 12
8112.2.dq χ8112(961,)\chi_{8112}(961, \cdot) n/a 2184 12
8112.2.ds χ8112(289,)\chi_{8112}(289, \cdot) n/a 4368 24
8112.2.du χ8112(187,)\chi_{8112}(187, \cdot) n/a 17472 24
8112.2.dv χ8112(317,)\chi_{8112}(317, \cdot) n/a 34848 24
8112.2.dx χ8112(181,)\chi_{8112}(181, \cdot) n/a 17472 24
8112.2.dz χ8112(131,)\chi_{8112}(131, \cdot) n/a 34848 24
8112.2.ed χ8112(281,)\chi_{8112}(281, \cdot) None 0 24
8112.2.ee χ8112(161,)\chi_{8112}(161, \cdot) n/a 8688 24
8112.2.eh χ8112(31,)\chi_{8112}(31, \cdot) n/a 4368 24
8112.2.ei χ8112(151,)\chi_{8112}(151, \cdot) None 0 24
8112.2.ej χ8112(157,)\chi_{8112}(157, \cdot) n/a 17472 24
8112.2.el χ8112(155,)\chi_{8112}(155, \cdot) n/a 34848 24
8112.2.en χ8112(5,)\chi_{8112}(5, \cdot) n/a 34848 24
8112.2.eq χ8112(499,)\chi_{8112}(499, \cdot) n/a 17472 24
8112.2.er χ8112(263,)\chi_{8112}(263, \cdot) None 0 24
8112.2.eu χ8112(121,)\chi_{8112}(121, \cdot) None 0 24
8112.2.ev χ8112(95,)\chi_{8112}(95, \cdot) n/a 8736 24
8112.2.ez χ8112(49,)\chi_{8112}(49, \cdot) n/a 4368 24
8112.2.fa χ8112(575,)\chi_{8112}(575, \cdot) n/a 8736 24
8112.2.fd χ8112(217,)\chi_{8112}(217, \cdot) None 0 24
8112.2.fe χ8112(407,)\chi_{8112}(407, \cdot) None 0 24
8112.2.fh χ8112(245,)\chi_{8112}(245, \cdot) n/a 69696 48
8112.2.fi χ8112(115,)\chi_{8112}(115, \cdot) n/a 34944 48
8112.2.fl χ8112(179,)\chi_{8112}(179, \cdot) n/a 69696 48
8112.2.fn χ8112(61,)\chi_{8112}(61, \cdot) n/a 34944 48
8112.2.fo χ8112(7,)\chi_{8112}(7, \cdot) None 0 48
8112.2.fp χ8112(175,)\chi_{8112}(175, \cdot) n/a 8736 48
8112.2.fs χ8112(305,)\chi_{8112}(305, \cdot) n/a 17376 48
8112.2.ft χ8112(41,)\chi_{8112}(41, \cdot) None 0 48
8112.2.fx χ8112(35,)\chi_{8112}(35, \cdot) n/a 69696 48
8112.2.fz χ8112(205,)\chi_{8112}(205, \cdot) n/a 34944 48
8112.2.ga χ8112(67,)\chi_{8112}(67, \cdot) n/a 34944 48
8112.2.gd χ8112(149,)\chi_{8112}(149, \cdot) n/a 69696 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(8112))S_{2}^{\mathrm{old}}(\Gamma_1(8112)) into lower level spaces

S2old(Γ1(8112)) S_{2}^{\mathrm{old}}(\Gamma_1(8112)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))30^{\oplus 30}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))15^{\oplus 15}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))18^{\oplus 18}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))12^{\oplus 12}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))9^{\oplus 9}\oplusS2new(Γ1(13))S_{2}^{\mathrm{new}}(\Gamma_1(13))20^{\oplus 20}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))6^{\oplus 6}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))6^{\oplus 6}\oplusS2new(Γ1(26))S_{2}^{\mathrm{new}}(\Gamma_1(26))16^{\oplus 16}\oplusS2new(Γ1(39))S_{2}^{\mathrm{new}}(\Gamma_1(39))10^{\oplus 10}\oplusS2new(Γ1(48))S_{2}^{\mathrm{new}}(\Gamma_1(48))3^{\oplus 3}\oplusS2new(Γ1(52))S_{2}^{\mathrm{new}}(\Gamma_1(52))12^{\oplus 12}\oplusS2new(Γ1(78))S_{2}^{\mathrm{new}}(\Gamma_1(78))8^{\oplus 8}\oplusS2new(Γ1(104))S_{2}^{\mathrm{new}}(\Gamma_1(104))8^{\oplus 8}\oplusS2new(Γ1(156))S_{2}^{\mathrm{new}}(\Gamma_1(156))6^{\oplus 6}\oplusS2new(Γ1(169))S_{2}^{\mathrm{new}}(\Gamma_1(169))10^{\oplus 10}\oplusS2new(Γ1(208))S_{2}^{\mathrm{new}}(\Gamma_1(208))4^{\oplus 4}\oplusS2new(Γ1(312))S_{2}^{\mathrm{new}}(\Gamma_1(312))4^{\oplus 4}\oplusS2new(Γ1(338))S_{2}^{\mathrm{new}}(\Gamma_1(338))8^{\oplus 8}\oplusS2new(Γ1(507))S_{2}^{\mathrm{new}}(\Gamma_1(507))5^{\oplus 5}\oplusS2new(Γ1(624))S_{2}^{\mathrm{new}}(\Gamma_1(624))2^{\oplus 2}\oplusS2new(Γ1(676))S_{2}^{\mathrm{new}}(\Gamma_1(676))6^{\oplus 6}\oplusS2new(Γ1(1014))S_{2}^{\mathrm{new}}(\Gamma_1(1014))4^{\oplus 4}\oplusS2new(Γ1(1352))S_{2}^{\mathrm{new}}(\Gamma_1(1352))4^{\oplus 4}\oplusS2new(Γ1(2028))S_{2}^{\mathrm{new}}(\Gamma_1(2028))3^{\oplus 3}\oplusS2new(Γ1(2704))S_{2}^{\mathrm{new}}(\Gamma_1(2704))2^{\oplus 2}\oplusS2new(Γ1(4056))S_{2}^{\mathrm{new}}(\Gamma_1(4056))2^{\oplus 2}