Defining parameters
Level: | \( N \) | \(=\) | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 816.r (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 816 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(816, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 296 | 296 | 0 |
Cusp forms | 280 | 280 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(816, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
816.2.r.a | $4$ | $6.516$ | \(\Q(i, \sqrt{5})\) | None | \(-4\) | \(2\) | \(0\) | \(0\) | \(q+(-1+\beta _{2})q^{2}+(\beta _{2}+\beta _{3})q^{3}-2\beta _{2}q^{4}+\cdots\) |
816.2.r.b | $4$ | $6.516$ | \(\Q(i, \sqrt{5})\) | None | \(4\) | \(2\) | \(0\) | \(0\) | \(q+(1+\beta _{2})q^{2}+(\beta _{2}+\beta _{3})q^{3}+2\beta _{2}q^{4}+\cdots\) |
816.2.r.c | $272$ | $6.516$ | None | \(0\) | \(-8\) | \(0\) | \(-8\) |