Properties

Label 816.2.r
Level 816816
Weight 22
Character orbit 816.r
Rep. character χ816(395,)\chi_{816}(395,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 280280
Newform subspaces 33
Sturm bound 288288
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 816=24317 816 = 2^{4} \cdot 3 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 816.r (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 816 816
Character field: Q(i)\Q(i)
Newform subspaces: 3 3
Sturm bound: 288288
Trace bound: 22
Distinguishing TpT_p: 55, 2929

Dimensions

The following table gives the dimensions of various subspaces of M2(816,[χ])M_{2}(816, [\chi]).

Total New Old
Modular forms 296 296 0
Cusp forms 280 280 0
Eisenstein series 16 16 0

Trace form

280q4q38q4+2q68q7+2q128q13+24q1516q16+4q184q21+16q22+14q24248q254q27+8q2816q3016q318q33++32q99+O(q100) 280 q - 4 q^{3} - 8 q^{4} + 2 q^{6} - 8 q^{7} + 2 q^{12} - 8 q^{13} + 24 q^{15} - 16 q^{16} + 4 q^{18} - 4 q^{21} + 16 q^{22} + 14 q^{24} - 248 q^{25} - 4 q^{27} + 8 q^{28} - 16 q^{30} - 16 q^{31} - 8 q^{33}+ \cdots + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(816,[χ])S_{2}^{\mathrm{new}}(816, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
816.2.r.a 816.r 816.r 44 6.5166.516 Q(i,5)\Q(i, \sqrt{5}) None 816.2.r.a 4-4 22 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(1+β2)q2+(β2+β3)q32β2q4+q+(-1+\beta _{2})q^{2}+(\beta _{2}+\beta _{3})q^{3}-2\beta _{2}q^{4}+\cdots
816.2.r.b 816.r 816.r 44 6.5166.516 Q(i,5)\Q(i, \sqrt{5}) None 816.2.r.a 44 22 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(1+β2)q2+(β2+β3)q3+2β2q4+q+(1+\beta _{2})q^{2}+(\beta _{2}+\beta _{3})q^{3}+2\beta _{2}q^{4}+\cdots
816.2.r.c 816.r 816.r 272272 6.5166.516 None 816.2.r.c 00 8-8 00 8-8 SU(2)[C4]\mathrm{SU}(2)[C_{4}]