Properties

Label 819.2.n
Level $819$
Weight $2$
Character orbit 819.n
Rep. character $\chi_{819}(100,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $90$
Newform subspaces $7$
Sturm bound $224$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.n (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(224\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(819, [\chi])\).

Total New Old
Modular forms 240 98 142
Cusp forms 208 90 118
Eisenstein series 32 8 24

Trace form

\( 90 q - q^{2} - 43 q^{4} + 2 q^{5} - 2 q^{7} + 12 q^{8} - 2 q^{10} + 6 q^{11} + 14 q^{14} - 35 q^{16} - 11 q^{17} - 4 q^{19} + 6 q^{20} - 14 q^{22} + 5 q^{23} - 39 q^{25} + 2 q^{26} - 12 q^{28} + 4 q^{29}+ \cdots + 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(819, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
819.2.n.a 819.n 91.g $2$ $6.540$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 819.2.n.a \(0\) \(0\) \(0\) \(5\) $\mathrm{U}(1)[D_{3}]$ \(q+(2-2\zeta_{6})q^{4}+(3-\zeta_{6})q^{7}+(3-4\zeta_{6})q^{13}+\cdots\)
819.2.n.b 819.n 91.g $2$ $6.540$ \(\Q(\sqrt{-3}) \) None 273.2.j.a \(0\) \(0\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{4}+(3-\zeta_{6})q^{7}+6q^{11}+\cdots\)
819.2.n.c 819.n 91.g $2$ $6.540$ \(\Q(\sqrt{-3}) \) None 91.2.g.a \(1\) \(0\) \(3\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}+(3-3\zeta_{6})q^{5}+\cdots\)
819.2.n.d 819.n 91.g $12$ $6.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 91.2.g.b \(-2\) \(0\) \(-1\) \(9\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{5}-\beta _{11})q^{2}+(\beta _{6}-\beta _{7})q^{4}+\cdots\)
819.2.n.e 819.n 91.g $16$ $6.540$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 273.2.j.b \(0\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{3}+\beta _{5}-\beta _{9}+\beta _{14}+\cdots)q^{4}+\cdots\)
819.2.n.f 819.n 91.g $20$ $6.540$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 273.2.j.c \(0\) \(0\) \(0\) \(-9\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{4})q^{2}+(-\beta _{2}-2\beta _{7}-\beta _{16}+\cdots)q^{4}+\cdots\)
819.2.n.g 819.n 91.g $36$ $6.540$ None 819.2.n.g \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(819, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(819, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)