Properties

Label 825.2.j
Level 825825
Weight 22
Character orbit 825.j
Rep. character χ825(43,)\chi_{825}(43,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 7272
Newform subspaces 44
Sturm bound 240240
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 825=35211 825 = 3 \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 825.j (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 55 55
Character field: Q(i)\Q(i)
Newform subspaces: 4 4
Sturm bound: 240240
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(825,[χ])M_{2}(825, [\chi]).

Total New Old
Modular forms 264 72 192
Cusp forms 216 72 144
Eisenstein series 48 0 48

Trace form

72q+16q1116q12104q1632q22+32q23+32q3116q3372q36+8q37+56q388q4232q4824q5380q56+24q58+32q66+32q67+88q97+O(q100) 72 q + 16 q^{11} - 16 q^{12} - 104 q^{16} - 32 q^{22} + 32 q^{23} + 32 q^{31} - 16 q^{33} - 72 q^{36} + 8 q^{37} + 56 q^{38} - 8 q^{42} - 32 q^{48} - 24 q^{53} - 80 q^{56} + 24 q^{58} + 32 q^{66} + 32 q^{67}+ \cdots - 88 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(825,[χ])S_{2}^{\mathrm{new}}(825, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
825.2.j.a 825.j 55.e 88 6.5886.588 Q(ζ24)\Q(\zeta_{24}) None 825.2.j.a 4-4 00 00 8-8 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ2q2β1q3+(β6+β21)q4+q-\beta_{2} q^{2}-\beta_1 q^{3}+(-\beta_{6}+\beta_{2}-1)q^{4}+\cdots
825.2.j.b 825.j 55.e 88 6.5886.588 Q(ζ24)\Q(\zeta_{24}) None 825.2.j.a 44 00 00 88 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β3β2+1)q2β1q3+(β6β2+1)q4+q+(\beta_{3}-\beta_{2}+1)q^{2}-\beta_1 q^{3}+(\beta_{6}-\beta_{2}+1)q^{4}+\cdots
825.2.j.c 825.j 55.e 2424 6.5886.588 None 165.2.j.a 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]
825.2.j.d 825.j 55.e 3232 6.5886.588 None 825.2.j.d 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(825,[χ])S_{2}^{\mathrm{old}}(825, [\chi]) into lower level spaces

S2old(825,[χ]) S_{2}^{\mathrm{old}}(825, [\chi]) \simeq S2new(55,[χ])S_{2}^{\mathrm{new}}(55, [\chi])4^{\oplus 4}\oplusS2new(165,[χ])S_{2}^{\mathrm{new}}(165, [\chi])2^{\oplus 2}\oplusS2new(275,[χ])S_{2}^{\mathrm{new}}(275, [\chi])2^{\oplus 2}