Defining parameters
Level: | \( N \) | \(=\) | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 825.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(825, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 72 | 192 |
Cusp forms | 216 | 72 | 144 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(825, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
825.2.j.a | $8$ | $6.588$ | \(\Q(\zeta_{24})\) | None | \(-4\) | \(0\) | \(0\) | \(-8\) | \(q-\beta_{2} q^{2}-\beta_1 q^{3}+(-\beta_{6}+\beta_{2}-1)q^{4}+\cdots\) |
825.2.j.b | $8$ | $6.588$ | \(\Q(\zeta_{24})\) | None | \(4\) | \(0\) | \(0\) | \(8\) | \(q+(\beta_{3}-\beta_{2}+1)q^{2}-\beta_1 q^{3}+(\beta_{6}-\beta_{2}+1)q^{4}+\cdots\) |
825.2.j.c | $24$ | $6.588$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
825.2.j.d | $32$ | $6.588$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(825, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)