Properties

Label 825.2.j
Level $825$
Weight $2$
Character orbit 825.j
Rep. character $\chi_{825}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $4$
Sturm bound $240$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(240\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(825, [\chi])\).

Total New Old
Modular forms 264 72 192
Cusp forms 216 72 144
Eisenstein series 48 0 48

Trace form

\( 72 q + 16 q^{11} - 16 q^{12} - 104 q^{16} - 32 q^{22} + 32 q^{23} + 32 q^{31} - 16 q^{33} - 72 q^{36} + 8 q^{37} + 56 q^{38} - 8 q^{42} - 32 q^{48} - 24 q^{53} - 80 q^{56} + 24 q^{58} + 32 q^{66} + 32 q^{67}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(825, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
825.2.j.a 825.j 55.e $8$ $6.588$ \(\Q(\zeta_{24})\) None 825.2.j.a \(-4\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{2} q^{2}-\beta_1 q^{3}+(-\beta_{6}+\beta_{2}-1)q^{4}+\cdots\)
825.2.j.b 825.j 55.e $8$ $6.588$ \(\Q(\zeta_{24})\) None 825.2.j.a \(4\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{3}-\beta_{2}+1)q^{2}-\beta_1 q^{3}+(\beta_{6}-\beta_{2}+1)q^{4}+\cdots\)
825.2.j.c 825.j 55.e $24$ $6.588$ None 165.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
825.2.j.d 825.j 55.e $32$ $6.588$ None 825.2.j.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(825, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)