Properties

Label 825.2.p
Level $825$
Weight $2$
Character orbit 825.p
Rep. character $\chi_{825}(181,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $240$
Newform subspaces $3$
Sturm bound $240$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.p (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(240\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(825, [\chi])\).

Total New Old
Modular forms 496 240 256
Cusp forms 464 240 224
Eisenstein series 32 0 32

Trace form

\( 240 q - 60 q^{4} + 6 q^{5} - 4 q^{6} + 4 q^{7} + 240 q^{9} - 2 q^{10} + 6 q^{11} + 4 q^{12} - 8 q^{13} + 2 q^{15} - 56 q^{16} + 2 q^{17} - 14 q^{19} + 4 q^{20} - 8 q^{21} + 30 q^{22} - 32 q^{23} - 12 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(825, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
825.2.p.a 825.p 275.k $4$ $6.588$ \(\Q(\zeta_{10})\) None 825.2.p.a \(-5\) \(4\) \(-5\) \(1\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-2+2\zeta_{10}+\zeta_{10}^{3})q^{2}+q^{3}-3\zeta_{10}q^{4}+\cdots\)
825.2.p.b 825.p 275.k $116$ $6.588$ None 825.2.p.b \(3\) \(116\) \(9\) \(-3\) $\mathrm{SU}(2)[C_{5}]$
825.2.p.c 825.p 275.k $120$ $6.588$ None 825.2.p.c \(2\) \(-120\) \(2\) \(6\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(825, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)