Properties

Label 832.2.a
Level $832$
Weight $2$
Character orbit 832.a
Rep. character $\chi_{832}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $16$
Sturm bound $224$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(224\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(832))\).

Total New Old
Modular forms 124 24 100
Cusp forms 101 24 77
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(7\)
\(-\)\(+\)\(-\)\(7\)
\(-\)\(-\)\(+\)\(5\)
Plus space\(+\)\(10\)
Minus space\(-\)\(14\)

Trace form

\( 24 q + 24 q^{9} + 24 q^{25} - 16 q^{29} - 16 q^{33} - 16 q^{37} - 16 q^{41} + 48 q^{45} + 24 q^{49} + 32 q^{53} - 16 q^{57} - 32 q^{61} + 16 q^{69} + 32 q^{77} - 24 q^{81} + 16 q^{85} - 32 q^{89} + 48 q^{93}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(832))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
832.2.a.a 832.a 1.a $1$ $6.644$ \(\Q\) None 26.2.a.b \(0\) \(-3\) \(1\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+q^{5}-q^{7}+6q^{9}-2q^{11}+\cdots\)
832.2.a.b 832.a 1.a $1$ $6.644$ \(\Q\) None 416.2.a.a \(0\) \(-1\) \(-1\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+3q^{7}-2q^{9}-2q^{11}+\cdots\)
832.2.a.c 832.a 1.a $1$ $6.644$ \(\Q\) None 104.2.a.a \(0\) \(-1\) \(1\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+5q^{7}-2q^{9}+2q^{11}+\cdots\)
832.2.a.d 832.a 1.a $1$ $6.644$ \(\Q\) None 26.2.a.a \(0\) \(-1\) \(3\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}-q^{7}-2q^{9}-6q^{11}+\cdots\)
832.2.a.e 832.a 1.a $1$ $6.644$ \(\Q\) None 52.2.a.a \(0\) \(0\) \(-2\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}-2q^{7}-3q^{9}+2q^{11}+q^{13}+\cdots\)
832.2.a.f 832.a 1.a $1$ $6.644$ \(\Q\) None 52.2.a.a \(0\) \(0\) \(-2\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+2q^{7}-3q^{9}-2q^{11}+q^{13}+\cdots\)
832.2.a.g 832.a 1.a $1$ $6.644$ \(\Q\) None 416.2.a.a \(0\) \(1\) \(-1\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-3q^{7}-2q^{9}+2q^{11}+\cdots\)
832.2.a.h 832.a 1.a $1$ $6.644$ \(\Q\) None 104.2.a.a \(0\) \(1\) \(1\) \(-5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-5q^{7}-2q^{9}-2q^{11}+\cdots\)
832.2.a.i 832.a 1.a $1$ $6.644$ \(\Q\) None 26.2.a.a \(0\) \(1\) \(3\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}+q^{7}-2q^{9}+6q^{11}+\cdots\)
832.2.a.j 832.a 1.a $1$ $6.644$ \(\Q\) None 26.2.a.b \(0\) \(3\) \(1\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+q^{5}+q^{7}+6q^{9}+2q^{11}+\cdots\)
832.2.a.k 832.a 1.a $2$ $6.644$ \(\Q(\sqrt{17}) \) None 104.2.a.b \(0\) \(-1\) \(-3\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(-2+\beta )q^{5}-\beta q^{7}+(1+\beta )q^{9}+\cdots\)
832.2.a.l 832.a 1.a $2$ $6.644$ \(\Q(\sqrt{17}) \) None 416.2.a.c \(0\) \(-1\) \(3\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(2-\beta )q^{5}+(2-\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
832.2.a.m 832.a 1.a $2$ $6.644$ \(\Q(\sqrt{5}) \) None 416.2.a.d \(0\) \(0\) \(-6\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}-3q^{5}+\beta q^{7}+2q^{9}+2\beta q^{11}+\cdots\)
832.2.a.n 832.a 1.a $2$ $6.644$ \(\Q(\sqrt{17}) \) None 104.2.a.b \(0\) \(1\) \(-3\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-2+\beta )q^{5}+\beta q^{7}+(1+\beta )q^{9}+\cdots\)
832.2.a.o 832.a 1.a $2$ $6.644$ \(\Q(\sqrt{17}) \) None 416.2.a.c \(0\) \(1\) \(3\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(2-\beta )q^{5}+(-2+\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
832.2.a.p 832.a 1.a $4$ $6.644$ 4.4.13448.1 None 416.2.a.f \(0\) \(0\) \(2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-\beta _{3}q^{5}+(-\beta _{1}+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(832))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(832)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 2}\)