Properties

Label 832.2.i.b.705.1
Level $832$
Weight $2$
Character 832.705
Analytic conductor $6.644$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(321,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.321");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 705.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 832.705
Dual form 832.2.i.b.321.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{3} -1.00000 q^{5} +(-0.500000 + 0.866025i) q^{9} +(-2.00000 - 3.46410i) q^{11} +(-2.50000 + 2.59808i) q^{13} +(1.00000 + 1.73205i) q^{15} +(-1.50000 + 2.59808i) q^{17} +(1.00000 - 1.73205i) q^{19} +(1.00000 + 1.73205i) q^{23} -4.00000 q^{25} -4.00000 q^{27} +(2.50000 + 4.33013i) q^{29} -2.00000 q^{31} +(-4.00000 + 6.92820i) q^{33} +(2.50000 + 4.33013i) q^{37} +(7.00000 + 1.73205i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(2.00000 - 3.46410i) q^{43} +(0.500000 - 0.866025i) q^{45} -6.00000 q^{47} +(3.50000 + 6.06218i) q^{49} +6.00000 q^{51} -13.0000 q^{53} +(2.00000 + 3.46410i) q^{55} -4.00000 q^{57} +(-6.00000 + 10.3923i) q^{59} +(-3.50000 + 6.06218i) q^{61} +(2.50000 - 2.59808i) q^{65} +(7.00000 + 12.1244i) q^{67} +(2.00000 - 3.46410i) q^{69} +(3.00000 - 5.19615i) q^{71} +7.00000 q^{73} +(4.00000 + 6.92820i) q^{75} -8.00000 q^{79} +(5.50000 + 9.52628i) q^{81} +4.00000 q^{83} +(1.50000 - 2.59808i) q^{85} +(5.00000 - 8.66025i) q^{87} +(-7.00000 - 12.1244i) q^{89} +(2.00000 + 3.46410i) q^{93} +(-1.00000 + 1.73205i) q^{95} +(1.00000 - 1.73205i) q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - q^{9} - 4 q^{11} - 5 q^{13} + 2 q^{15} - 3 q^{17} + 2 q^{19} + 2 q^{23} - 8 q^{25} - 8 q^{27} + 5 q^{29} - 4 q^{31} - 8 q^{33} + 5 q^{37} + 14 q^{39} - 3 q^{41} + 4 q^{43} + q^{45}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i \(-0.970753\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) 0 0
\(15\) 1.00000 + 1.73205i 0.258199 + 0.447214i
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) −4.00000 + 6.92820i −0.696311 + 1.20605i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.50000 + 4.33013i 0.410997 + 0.711868i 0.994999 0.0998840i \(-0.0318472\pi\)
−0.584002 + 0.811752i \(0.698514\pi\)
\(38\) 0 0
\(39\) 7.00000 + 1.73205i 1.12090 + 0.277350i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 0 0
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −13.0000 −1.78569 −0.892844 0.450367i \(-0.851293\pi\)
−0.892844 + 0.450367i \(0.851293\pi\)
\(54\) 0 0
\(55\) 2.00000 + 3.46410i 0.269680 + 0.467099i
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) −6.00000 + 10.3923i −0.781133 + 1.35296i 0.150148 + 0.988663i \(0.452025\pi\)
−0.931282 + 0.364299i \(0.881308\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.50000 2.59808i 0.310087 0.322252i
\(66\) 0 0
\(67\) 7.00000 + 12.1244i 0.855186 + 1.48123i 0.876472 + 0.481452i \(0.159891\pi\)
−0.0212861 + 0.999773i \(0.506776\pi\)
\(68\) 0 0
\(69\) 2.00000 3.46410i 0.240772 0.417029i
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) 4.00000 + 6.92820i 0.461880 + 0.800000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) 0 0
\(87\) 5.00000 8.66025i 0.536056 0.928477i
\(88\) 0 0
\(89\) −7.00000 12.1244i −0.741999 1.28518i −0.951584 0.307389i \(-0.900545\pi\)
0.209585 0.977790i \(-0.432789\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.00000 + 3.46410i 0.207390 + 0.359211i
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i \(-0.800958\pi\)
0.912317 + 0.409484i \(0.134291\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −5.50000 9.52628i −0.547270 0.947900i −0.998460 0.0554722i \(-0.982334\pi\)
0.451190 0.892428i \(-0.351000\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 5.00000 8.66025i 0.474579 0.821995i
\(112\) 0 0
\(113\) 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i \(-0.694196\pi\)
0.996262 + 0.0863794i \(0.0275297\pi\)
\(114\) 0 0
\(115\) −1.00000 1.73205i −0.0932505 0.161515i
\(116\) 0 0
\(117\) −1.00000 3.46410i −0.0924500 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −11.0000 19.0526i −0.976092 1.69064i −0.676283 0.736642i \(-0.736410\pi\)
−0.299809 0.953999i \(-0.596923\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 0.500000 0.866025i 0.0427179 0.0739895i −0.843876 0.536538i \(-0.819732\pi\)
0.886594 + 0.462549i \(0.153065\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 6.00000 + 10.3923i 0.505291 + 0.875190i
\(142\) 0 0
\(143\) 14.0000 + 3.46410i 1.17074 + 0.289683i
\(144\) 0 0
\(145\) −2.50000 4.33013i −0.207614 0.359597i
\(146\) 0 0
\(147\) 7.00000 12.1244i 0.577350 1.00000i
\(148\) 0 0
\(149\) 10.5000 18.1865i 0.860194 1.48990i −0.0115483 0.999933i \(-0.503676\pi\)
0.871742 0.489966i \(-0.162991\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) 0 0
\(153\) −1.50000 2.59808i −0.121268 0.210042i
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) −5.00000 −0.399043 −0.199522 0.979893i \(-0.563939\pi\)
−0.199522 + 0.979893i \(0.563939\pi\)
\(158\) 0 0
\(159\) 13.0000 + 22.5167i 1.03097 + 1.78569i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.00000 + 13.8564i −0.626608 + 1.08532i 0.361619 + 0.932326i \(0.382224\pi\)
−0.988227 + 0.152992i \(0.951109\pi\)
\(164\) 0 0
\(165\) 4.00000 6.92820i 0.311400 0.539360i
\(166\) 0 0
\(167\) −2.00000 3.46410i −0.154765 0.268060i 0.778209 0.628006i \(-0.216129\pi\)
−0.932973 + 0.359946i \(0.882795\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) 1.00000 + 1.73205i 0.0764719 + 0.132453i
\(172\) 0 0
\(173\) −1.00000 + 1.73205i −0.0760286 + 0.131685i −0.901533 0.432710i \(-0.857557\pi\)
0.825505 + 0.564396i \(0.190891\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.0000 1.80395
\(178\) 0 0
\(179\) −8.00000 13.8564i −0.597948 1.03568i −0.993124 0.117071i \(-0.962650\pi\)
0.395175 0.918606i \(-0.370684\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) −2.50000 4.33013i −0.183804 0.318357i
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 0 0
\(193\) 10.5000 + 18.1865i 0.755807 + 1.30910i 0.944972 + 0.327150i \(0.106088\pi\)
−0.189166 + 0.981945i \(0.560578\pi\)
\(194\) 0 0
\(195\) −7.00000 1.73205i −0.501280 0.124035i
\(196\) 0 0
\(197\) −9.00000 15.5885i −0.641223 1.11063i −0.985160 0.171639i \(-0.945094\pi\)
0.343937 0.938993i \(-0.388239\pi\)
\(198\) 0 0
\(199\) −7.00000 + 12.1244i −0.496217 + 0.859473i −0.999990 0.00436292i \(-0.998611\pi\)
0.503774 + 0.863836i \(0.331945\pi\)
\(200\) 0 0
\(201\) 14.0000 24.2487i 0.987484 1.71037i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) −9.00000 15.5885i −0.619586 1.07315i −0.989561 0.144112i \(-0.953967\pi\)
0.369976 0.929041i \(-0.379366\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) −2.00000 + 3.46410i −0.136399 + 0.236250i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −7.00000 12.1244i −0.473016 0.819288i
\(220\) 0 0
\(221\) −3.00000 10.3923i −0.201802 0.699062i
\(222\) 0 0
\(223\) 9.00000 + 15.5885i 0.602685 + 1.04388i 0.992413 + 0.122950i \(0.0392356\pi\)
−0.389728 + 0.920930i \(0.627431\pi\)
\(224\) 0 0
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) 0 0
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) 8.00000 + 13.8564i 0.519656 + 0.900070i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) 0 0
\(243\) 5.00000 8.66025i 0.320750 0.555556i
\(244\) 0 0
\(245\) −3.50000 6.06218i −0.223607 0.387298i
\(246\) 0 0
\(247\) 2.00000 + 6.92820i 0.127257 + 0.440831i
\(248\) 0 0
\(249\) −4.00000 6.92820i −0.253490 0.439057i
\(250\) 0 0
\(251\) 11.0000 19.0526i 0.694314 1.20259i −0.276098 0.961130i \(-0.589041\pi\)
0.970411 0.241457i \(-0.0776254\pi\)
\(252\) 0 0
\(253\) 4.00000 6.92820i 0.251478 0.435572i
\(254\) 0 0
\(255\) −6.00000 −0.375735
\(256\) 0 0
\(257\) −5.50000 9.52628i −0.343081 0.594233i 0.641923 0.766769i \(-0.278137\pi\)
−0.985003 + 0.172536i \(0.944804\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) 0 0
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) 13.0000 0.798584
\(266\) 0 0
\(267\) −14.0000 + 24.2487i −0.856786 + 1.48400i
\(268\) 0 0
\(269\) 7.00000 12.1244i 0.426798 0.739235i −0.569789 0.821791i \(-0.692975\pi\)
0.996586 + 0.0825561i \(0.0263084\pi\)
\(270\) 0 0
\(271\) 6.00000 + 10.3923i 0.364474 + 0.631288i 0.988692 0.149963i \(-0.0479155\pi\)
−0.624218 + 0.781251i \(0.714582\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.00000 + 13.8564i 0.482418 + 0.835573i
\(276\) 0 0
\(277\) 0.500000 0.866025i 0.0300421 0.0520344i −0.850613 0.525792i \(-0.823769\pi\)
0.880656 + 0.473757i \(0.157103\pi\)
\(278\) 0 0
\(279\) 1.00000 1.73205i 0.0598684 0.103695i
\(280\) 0 0
\(281\) −21.0000 −1.25275 −0.626377 0.779520i \(-0.715463\pi\)
−0.626377 + 0.779520i \(0.715463\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) −9.50000 + 16.4545i −0.554996 + 0.961281i 0.442908 + 0.896567i \(0.353947\pi\)
−0.997904 + 0.0647140i \(0.979386\pi\)
\(294\) 0 0
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) 0 0
\(297\) 8.00000 + 13.8564i 0.464207 + 0.804030i
\(298\) 0 0
\(299\) −7.00000 1.73205i −0.404820 0.100167i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −11.0000 + 19.0526i −0.631933 + 1.09454i
\(304\) 0 0
\(305\) 3.50000 6.06218i 0.200409 0.347119i
\(306\) 0 0
\(307\) 26.0000 1.48390 0.741949 0.670456i \(-0.233902\pi\)
0.741949 + 0.670456i \(0.233902\pi\)
\(308\) 0 0
\(309\) 14.0000 + 24.2487i 0.796432 + 1.37946i
\(310\) 0 0
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.00000 0.168497 0.0842484 0.996445i \(-0.473151\pi\)
0.0842484 + 0.996445i \(0.473151\pi\)
\(318\) 0 0
\(319\) 10.0000 17.3205i 0.559893 0.969762i
\(320\) 0 0
\(321\) −6.00000 + 10.3923i −0.334887 + 0.580042i
\(322\) 0 0
\(323\) 3.00000 + 5.19615i 0.166924 + 0.289122i
\(324\) 0 0
\(325\) 10.0000 10.3923i 0.554700 0.576461i
\(326\) 0 0
\(327\) −10.0000 17.3205i −0.553001 0.957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) 0 0
\(333\) −5.00000 −0.273998
\(334\) 0 0
\(335\) −7.00000 12.1244i −0.382451 0.662424i
\(336\) 0 0
\(337\) −1.00000 −0.0544735 −0.0272367 0.999629i \(-0.508671\pi\)
−0.0272367 + 0.999629i \(0.508671\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 4.00000 + 6.92820i 0.216612 + 0.375183i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.00000 + 3.46410i −0.107676 + 0.186501i
\(346\) 0 0
\(347\) −5.00000 + 8.66025i −0.268414 + 0.464907i −0.968452 0.249198i \(-0.919833\pi\)
0.700038 + 0.714105i \(0.253166\pi\)
\(348\) 0 0
\(349\) −5.00000 8.66025i −0.267644 0.463573i 0.700609 0.713545i \(-0.252912\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 0 0
\(351\) 10.0000 10.3923i 0.533761 0.554700i
\(352\) 0 0
\(353\) −1.50000 2.59808i −0.0798369 0.138282i 0.823343 0.567545i \(-0.192107\pi\)
−0.903179 + 0.429263i \(0.858773\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) −7.00000 −0.366397
\(366\) 0 0
\(367\) −11.0000 19.0526i −0.574195 0.994535i −0.996129 0.0879086i \(-0.971982\pi\)
0.421933 0.906627i \(-0.361352\pi\)
\(368\) 0 0
\(369\) 3.00000 0.156174
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.50000 + 2.59808i −0.0776671 + 0.134523i −0.902243 0.431228i \(-0.858080\pi\)
0.824576 + 0.565751i \(0.191414\pi\)
\(374\) 0 0
\(375\) −9.00000 15.5885i −0.464758 0.804984i
\(376\) 0 0
\(377\) −17.5000 4.33013i −0.901296 0.223013i
\(378\) 0 0
\(379\) −1.00000 1.73205i −0.0513665 0.0889695i 0.839199 0.543825i \(-0.183024\pi\)
−0.890565 + 0.454855i \(0.849691\pi\)
\(380\) 0 0
\(381\) −22.0000 + 38.1051i −1.12709 + 1.95218i
\(382\) 0 0
\(383\) 2.00000 3.46410i 0.102195 0.177007i −0.810394 0.585886i \(-0.800747\pi\)
0.912589 + 0.408879i \(0.134080\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.00000 + 3.46410i 0.101666 + 0.176090i
\(388\) 0 0
\(389\) −33.0000 −1.67317 −0.836583 0.547840i \(-0.815450\pi\)
−0.836583 + 0.547840i \(0.815450\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) 18.0000 + 31.1769i 0.907980 + 1.57267i
\(394\) 0 0
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −17.0000 + 29.4449i −0.853206 + 1.47780i 0.0250943 + 0.999685i \(0.492011\pi\)
−0.878300 + 0.478110i \(0.841322\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.5000 + 28.5788i 0.823971 + 1.42716i 0.902703 + 0.430263i \(0.141579\pi\)
−0.0787327 + 0.996896i \(0.525087\pi\)
\(402\) 0 0
\(403\) 5.00000 5.19615i 0.249068 0.258839i
\(404\) 0 0
\(405\) −5.50000 9.52628i −0.273297 0.473365i
\(406\) 0 0
\(407\) 10.0000 17.3205i 0.495682 0.858546i
\(408\) 0 0
\(409\) 4.50000 7.79423i 0.222511 0.385400i −0.733059 0.680165i \(-0.761908\pi\)
0.955570 + 0.294765i \(0.0952414\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) 0 0
\(417\) −32.0000 −1.56705
\(418\) 0 0
\(419\) −7.00000 12.1244i −0.341972 0.592314i 0.642827 0.766012i \(-0.277762\pi\)
−0.984799 + 0.173698i \(0.944428\pi\)
\(420\) 0 0
\(421\) −9.00000 −0.438633 −0.219317 0.975654i \(-0.570383\pi\)
−0.219317 + 0.975654i \(0.570383\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −8.00000 27.7128i −0.386244 1.33799i
\(430\) 0 0
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 0 0
\(433\) 0.500000 0.866025i 0.0240285 0.0416185i −0.853761 0.520665i \(-0.825684\pi\)
0.877790 + 0.479046i \(0.159017\pi\)
\(434\) 0 0
\(435\) −5.00000 + 8.66025i −0.239732 + 0.415227i
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) 7.00000 + 12.1244i 0.331832 + 0.574750i
\(446\) 0 0
\(447\) −42.0000 −1.98653
\(448\) 0 0
\(449\) 5.00000 8.66025i 0.235965 0.408703i −0.723588 0.690232i \(-0.757508\pi\)
0.959553 + 0.281529i \(0.0908417\pi\)
\(450\) 0 0
\(451\) −6.00000 + 10.3923i −0.282529 + 0.489355i
\(452\) 0 0
\(453\) 22.0000 + 38.1051i 1.03365 + 1.79033i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.5000 + 21.6506i 0.584725 + 1.01277i 0.994910 + 0.100771i \(0.0321310\pi\)
−0.410184 + 0.912003i \(0.634536\pi\)
\(458\) 0 0
\(459\) 6.00000 10.3923i 0.280056 0.485071i
\(460\) 0 0
\(461\) 10.5000 18.1865i 0.489034 0.847031i −0.510887 0.859648i \(-0.670683\pi\)
0.999920 + 0.0126168i \(0.00401615\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) 0 0
\(467\) 24.0000 1.11059 0.555294 0.831654i \(-0.312606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.00000 + 8.66025i 0.230388 + 0.399043i
\(472\) 0 0
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) −4.00000 + 6.92820i −0.183533 + 0.317888i
\(476\) 0 0
\(477\) 6.50000 11.2583i 0.297615 0.515484i
\(478\) 0 0
\(479\) 3.00000 + 5.19615i 0.137073 + 0.237418i 0.926388 0.376571i \(-0.122897\pi\)
−0.789314 + 0.613990i \(0.789564\pi\)
\(480\) 0 0
\(481\) −17.5000 4.33013i −0.797931 0.197437i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) 16.0000 27.7128i 0.725029 1.25579i −0.233933 0.972253i \(-0.575160\pi\)
0.958962 0.283535i \(-0.0915071\pi\)
\(488\) 0 0
\(489\) 32.0000 1.44709
\(490\) 0 0
\(491\) 8.00000 + 13.8564i 0.361035 + 0.625331i 0.988131 0.153611i \(-0.0490902\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(492\) 0 0
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) −4.00000 + 6.92820i −0.178707 + 0.309529i
\(502\) 0 0
\(503\) −14.0000 + 24.2487i −0.624229 + 1.08120i 0.364460 + 0.931219i \(0.381254\pi\)
−0.988689 + 0.149978i \(0.952080\pi\)
\(504\) 0 0
\(505\) 5.50000 + 9.52628i 0.244747 + 0.423914i
\(506\) 0 0
\(507\) −22.0000 + 13.8564i −0.977054 + 0.615385i
\(508\) 0 0
\(509\) −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i \(-0.187846\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.00000 + 6.92820i −0.176604 + 0.305888i
\(514\) 0 0
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) 12.0000 + 20.7846i 0.527759 + 0.914106i
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) −25.0000 −1.09527 −0.547635 0.836717i \(-0.684472\pi\)
−0.547635 + 0.836717i \(0.684472\pi\)
\(522\) 0 0
\(523\) −8.00000 13.8564i −0.349816 0.605898i 0.636401 0.771358i \(-0.280422\pi\)
−0.986216 + 0.165460i \(0.947089\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) −6.00000 10.3923i −0.260378 0.450988i
\(532\) 0 0
\(533\) 10.5000 + 2.59808i 0.454805 + 0.112535i
\(534\) 0 0
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 0 0
\(537\) −16.0000 + 27.7128i −0.690451 + 1.19590i
\(538\) 0 0
\(539\) 14.0000 24.2487i 0.603023 1.04447i
\(540\) 0 0
\(541\) 23.0000 0.988847 0.494424 0.869221i \(-0.335379\pi\)
0.494424 + 0.869221i \(0.335379\pi\)
\(542\) 0 0
\(543\) 5.00000 + 8.66025i 0.214571 + 0.371647i
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 0 0
\(549\) −3.50000 6.06218i −0.149376 0.258727i
\(550\) 0 0
\(551\) 10.0000 0.426014
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5.00000 + 8.66025i −0.212238 + 0.367607i
\(556\) 0 0
\(557\) −11.5000 19.9186i −0.487271 0.843978i 0.512622 0.858614i \(-0.328674\pi\)
−0.999893 + 0.0146368i \(0.995341\pi\)
\(558\) 0 0
\(559\) 4.00000 + 13.8564i 0.169182 + 0.586064i
\(560\) 0 0
\(561\) −12.0000 20.7846i −0.506640 0.877527i
\(562\) 0 0
\(563\) −12.0000 + 20.7846i −0.505740 + 0.875967i 0.494238 + 0.869326i \(0.335447\pi\)
−0.999978 + 0.00664037i \(0.997886\pi\)
\(564\) 0 0
\(565\) −4.50000 + 7.79423i −0.189316 + 0.327906i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) −4.00000 6.92820i −0.166812 0.288926i
\(576\) 0 0
\(577\) −29.0000 −1.20729 −0.603643 0.797255i \(-0.706285\pi\)
−0.603643 + 0.797255i \(0.706285\pi\)
\(578\) 0 0
\(579\) 21.0000 36.3731i 0.872730 1.51161i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 26.0000 + 45.0333i 1.07681 + 1.86509i
\(584\) 0 0
\(585\) 1.00000 + 3.46410i 0.0413449 + 0.143223i
\(586\) 0 0
\(587\) −8.00000 13.8564i −0.330195 0.571915i 0.652355 0.757914i \(-0.273781\pi\)
−0.982550 + 0.185999i \(0.940448\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) −18.0000 + 31.1769i −0.740421 + 1.28245i
\(592\) 0 0
\(593\) −1.00000 −0.0410651 −0.0205325 0.999789i \(-0.506536\pi\)
−0.0205325 + 0.999789i \(0.506536\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 28.0000 1.14596
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 4.50000 + 7.79423i 0.183559 + 0.317933i 0.943090 0.332538i \(-0.107905\pi\)
−0.759531 + 0.650471i \(0.774572\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) 2.50000 4.33013i 0.101639 0.176045i
\(606\) 0 0
\(607\) −17.0000 + 29.4449i −0.690009 + 1.19513i 0.281826 + 0.959466i \(0.409060\pi\)
−0.971834 + 0.235665i \(0.924273\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.0000 15.5885i 0.606835 0.630641i
\(612\) 0 0
\(613\) 0.500000 + 0.866025i 0.0201948 + 0.0349784i 0.875946 0.482409i \(-0.160238\pi\)
−0.855751 + 0.517387i \(0.826905\pi\)
\(614\) 0 0
\(615\) 3.00000 5.19615i 0.120972 0.209529i
\(616\) 0 0
\(617\) 18.5000 32.0429i 0.744782 1.29000i −0.205515 0.978654i \(-0.565887\pi\)
0.950297 0.311346i \(-0.100780\pi\)
\(618\) 0 0
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) 0 0
\(621\) −4.00000 6.92820i −0.160514 0.278019i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 8.00000 + 13.8564i 0.319489 + 0.553372i
\(628\) 0 0
\(629\) −15.0000 −0.598089
\(630\) 0 0
\(631\) 10.0000 17.3205i 0.398094 0.689519i −0.595397 0.803432i \(-0.703005\pi\)
0.993491 + 0.113913i \(0.0363385\pi\)
\(632\) 0 0
\(633\) −18.0000 + 31.1769i −0.715436 + 1.23917i
\(634\) 0 0
\(635\) 11.0000 + 19.0526i 0.436522 + 0.756078i
\(636\) 0 0
\(637\) −24.5000 6.06218i −0.970725 0.240192i
\(638\) 0 0
\(639\) 3.00000 + 5.19615i 0.118678 + 0.205557i
\(640\) 0 0
\(641\) 8.50000 14.7224i 0.335730 0.581501i −0.647895 0.761730i \(-0.724350\pi\)
0.983625 + 0.180229i \(0.0576838\pi\)
\(642\) 0 0
\(643\) 2.00000 3.46410i 0.0788723 0.136611i −0.823891 0.566748i \(-0.808201\pi\)
0.902764 + 0.430137i \(0.141535\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) 19.0000 + 32.9090i 0.746967 + 1.29378i 0.949270 + 0.314462i \(0.101824\pi\)
−0.202303 + 0.979323i \(0.564843\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.00000 + 12.1244i 0.273931 + 0.474463i 0.969865 0.243643i \(-0.0783426\pi\)
−0.695934 + 0.718106i \(0.745009\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) 0 0
\(657\) −3.50000 + 6.06218i −0.136548 + 0.236508i
\(658\) 0 0
\(659\) −14.0000 + 24.2487i −0.545363 + 0.944596i 0.453221 + 0.891398i \(0.350275\pi\)
−0.998584 + 0.0531977i \(0.983059\pi\)
\(660\) 0 0
\(661\) 6.50000 + 11.2583i 0.252821 + 0.437898i 0.964301 0.264807i \(-0.0853084\pi\)
−0.711481 + 0.702706i \(0.751975\pi\)
\(662\) 0 0
\(663\) −15.0000 + 15.5885i −0.582552 + 0.605406i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.00000 + 8.66025i −0.193601 + 0.335326i
\(668\) 0 0
\(669\) 18.0000 31.1769i 0.695920 1.20537i
\(670\) 0 0
\(671\) 28.0000 1.08093
\(672\) 0 0
\(673\) 2.50000 + 4.33013i 0.0963679 + 0.166914i 0.910179 0.414216i \(-0.135944\pi\)
−0.813811 + 0.581130i \(0.802611\pi\)
\(674\) 0 0
\(675\) 16.0000 0.615840
\(676\) 0 0
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 36.0000 1.37952
\(682\) 0 0
\(683\) 19.0000 32.9090i 0.727015 1.25923i −0.231125 0.972924i \(-0.574240\pi\)
0.958139 0.286302i \(-0.0924262\pi\)
\(684\) 0 0
\(685\) −0.500000 + 0.866025i −0.0191040 + 0.0330891i
\(686\) 0 0
\(687\) −18.0000 31.1769i −0.686743 1.18947i
\(688\) 0 0
\(689\) 32.5000 33.7750i 1.23815 1.28672i
\(690\) 0 0
\(691\) −10.0000 17.3205i −0.380418 0.658903i 0.610704 0.791859i \(-0.290887\pi\)
−0.991122 + 0.132956i \(0.957553\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.00000 + 13.8564i −0.303457 + 0.525603i
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) −6.00000 10.3923i −0.226941 0.393073i
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) 0 0
\(705\) −6.00000 10.3923i −0.225973 0.391397i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 10.5000 18.1865i 0.394336 0.683010i −0.598680 0.800988i \(-0.704308\pi\)
0.993016 + 0.117978i \(0.0376414\pi\)
\(710\) 0 0
\(711\) 4.00000 6.92820i 0.150012 0.259828i
\(712\) 0 0
\(713\) −2.00000 3.46410i −0.0749006 0.129732i
\(714\) 0 0
\(715\) −14.0000 3.46410i −0.523570 0.129550i
\(716\) 0 0
\(717\) −12.0000 20.7846i −0.448148 0.776215i
\(718\) 0 0
\(719\) −24.0000 + 41.5692i −0.895049 + 1.55027i −0.0613050 + 0.998119i \(0.519526\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 14.0000 0.520666
\(724\) 0 0
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 6.00000 + 10.3923i 0.221918 + 0.384373i
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) −7.00000 + 12.1244i −0.258199 + 0.447214i
\(736\) 0 0
\(737\) 28.0000 48.4974i 1.03139 1.78643i
\(738\) 0 0
\(739\) −10.0000 17.3205i −0.367856 0.637145i 0.621374 0.783514i \(-0.286575\pi\)
−0.989230 + 0.146369i \(0.953241\pi\)
\(740\) 0 0
\(741\) 10.0000 10.3923i 0.367359 0.381771i
\(742\) 0 0
\(743\) −24.0000 41.5692i −0.880475 1.52503i −0.850814 0.525467i \(-0.823891\pi\)
−0.0296605 0.999560i \(-0.509443\pi\)
\(744\) 0 0
\(745\) −10.5000 + 18.1865i −0.384690 + 0.666303i
\(746\) 0 0
\(747\) −2.00000 + 3.46410i −0.0731762 + 0.126745i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.0000 17.3205i −0.364905 0.632034i 0.623856 0.781540i \(-0.285565\pi\)
−0.988761 + 0.149505i \(0.952232\pi\)
\(752\) 0 0
\(753\) −44.0000 −1.60345
\(754\) 0 0
\(755\) 22.0000 0.800662
\(756\) 0 0
\(757\) 19.0000 + 32.9090i 0.690567 + 1.19610i 0.971652 + 0.236414i \(0.0759722\pi\)
−0.281086 + 0.959683i \(0.590695\pi\)
\(758\) 0 0
\(759\) −16.0000 −0.580763
\(760\) 0 0
\(761\) −19.0000 + 32.9090i −0.688749 + 1.19295i 0.283493 + 0.958974i \(0.408507\pi\)
−0.972243 + 0.233975i \(0.924827\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.50000 + 2.59808i 0.0542326 + 0.0939336i
\(766\) 0 0
\(767\) −12.0000 41.5692i −0.433295 1.50098i
\(768\) 0 0
\(769\) −19.0000 32.9090i −0.685158 1.18673i −0.973387 0.229166i \(-0.926400\pi\)
0.288230 0.957561i \(-0.406933\pi\)
\(770\) 0 0
\(771\) −11.0000 + 19.0526i −0.396155 + 0.686161i
\(772\) 0 0
\(773\) −3.00000 + 5.19615i −0.107903 + 0.186893i −0.914920 0.403634i \(-0.867747\pi\)
0.807018 + 0.590527i \(0.201080\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) −10.0000 17.3205i −0.357371 0.618984i
\(784\) 0 0
\(785\) 5.00000 0.178458
\(786\) 0 0
\(787\) −11.0000 + 19.0526i −0.392108 + 0.679150i −0.992727 0.120384i \(-0.961587\pi\)
0.600620 + 0.799535i \(0.294921\pi\)
\(788\) 0 0
\(789\) 24.0000 41.5692i 0.854423 1.47990i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.00000 24.2487i −0.248577 0.861097i
\(794\) 0 0
\(795\) −13.0000 22.5167i −0.461062 0.798584i
\(796\) 0 0
\(797\) 15.0000 25.9808i 0.531327 0.920286i −0.468004 0.883726i \(-0.655027\pi\)
0.999331 0.0365596i \(-0.0116399\pi\)
\(798\) 0 0
\(799\) 9.00000 15.5885i 0.318397 0.551480i
\(800\) 0 0
\(801\) 14.0000 0.494666
\(802\) 0 0
\(803\) −14.0000 24.2487i −0.494049 0.855718i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −28.0000 −0.985647
\(808\) 0 0
\(809\) 12.5000 + 21.6506i 0.439477 + 0.761196i 0.997649 0.0685291i \(-0.0218306\pi\)
−0.558173 + 0.829725i \(0.688497\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 12.0000 20.7846i 0.420858 0.728948i
\(814\) 0 0
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 0 0
\(817\) −4.00000 6.92820i −0.139942 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.0000 + 25.9808i 0.523504 + 0.906735i 0.999626 + 0.0273557i \(0.00870868\pi\)
−0.476122 + 0.879379i \(0.657958\pi\)
\(822\) 0 0
\(823\) 26.0000 45.0333i 0.906303 1.56976i 0.0871445 0.996196i \(-0.472226\pi\)
0.819159 0.573567i \(-0.194441\pi\)
\(824\) 0 0
\(825\) 16.0000 27.7128i 0.557048 0.964836i
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −15.5000 26.8468i −0.538337 0.932427i −0.998994 0.0448490i \(-0.985719\pi\)
0.460657 0.887578i \(-0.347614\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) −21.0000 −0.727607
\(834\) 0 0
\(835\) 2.00000 + 3.46410i 0.0692129 + 0.119880i
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) −13.0000 + 22.5167i −0.448810 + 0.777361i −0.998309 0.0581329i \(-0.981485\pi\)
0.549499 + 0.835494i \(0.314819\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 0 0
\(843\) 21.0000 + 36.3731i 0.723278 + 1.25275i
\(844\) 0 0
\(845\) 0.500000 + 12.9904i 0.0172005 + 0.446883i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 20.0000 34.6410i 0.686398 1.18888i
\(850\) 0 0
\(851\) −5.00000 + 8.66025i −0.171398 + 0.296870i
\(852\) 0 0
\(853\) 39.0000 1.33533 0.667667 0.744460i \(-0.267293\pi\)
0.667667 + 0.744460i \(0.267293\pi\)
\(854\) 0 0
\(855\) −1.00000 1.73205i −0.0341993 0.0592349i
\(856\) 0 0
\(857\) −21.0000 −0.717346 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(858\) 0 0
\(859\) 50.0000 1.70598 0.852989 0.521929i \(-0.174787\pi\)
0.852989 + 0.521929i \(0.174787\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 1.00000 1.73205i 0.0340010 0.0588915i
\(866\) 0 0
\(867\) 8.00000 13.8564i 0.271694 0.470588i
\(868\) 0 0
\(869\) 16.0000 + 27.7128i 0.542763 + 0.940093i
\(870\) 0 0
\(871\) −49.0000 12.1244i −1.66030 0.410818i
\(872\) 0 0
\(873\) 1.00000 + 1.73205i 0.0338449 + 0.0586210i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.5000 35.5070i 0.692236 1.19899i −0.278868 0.960329i \(-0.589959\pi\)
0.971104 0.238658i \(-0.0767075\pi\)
\(878\) 0 0
\(879\) 38.0000 1.28171
\(880\) 0 0
\(881\) 14.5000 + 25.1147i 0.488517 + 0.846137i 0.999913 0.0132086i \(-0.00420455\pi\)
−0.511395 + 0.859346i \(0.670871\pi\)
\(882\) 0 0
\(883\) −58.0000 −1.95186 −0.975928 0.218094i \(-0.930016\pi\)
−0.975928 + 0.218094i \(0.930016\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) −28.0000 48.4974i −0.940148 1.62838i −0.765186 0.643809i \(-0.777353\pi\)
−0.174962 0.984575i \(-0.555980\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 22.0000 38.1051i 0.737028 1.27657i
\(892\) 0 0
\(893\) −6.00000 + 10.3923i −0.200782 + 0.347765i
\(894\) 0 0
\(895\) 8.00000 + 13.8564i 0.267411 + 0.463169i
\(896\) 0 0
\(897\) 4.00000 + 13.8564i 0.133556 + 0.462652i
\(898\) 0 0
\(899\) −5.00000 8.66025i −0.166759 0.288836i
\(900\) 0 0
\(901\) 19.5000 33.7750i 0.649639 1.12521i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.00000 0.166206
\(906\) 0 0
\(907\) 8.00000 + 13.8564i 0.265636 + 0.460094i 0.967730 0.251990i \(-0.0810849\pi\)
−0.702094 + 0.712084i \(0.747752\pi\)
\(908\) 0 0
\(909\) 11.0000 0.364847
\(910\) 0 0
\(911\) 32.0000 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(912\) 0 0
\(913\) −8.00000 13.8564i −0.264761 0.458580i
\(914\) 0 0
\(915\) −14.0000 −0.462826
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −15.0000 + 25.9808i −0.494804 + 0.857026i −0.999982 0.00598907i \(-0.998094\pi\)
0.505178 + 0.863015i \(0.331427\pi\)
\(920\) 0 0
\(921\) −26.0000 45.0333i −0.856729 1.48390i
\(922\) 0 0
\(923\) 6.00000 + 20.7846i 0.197492 + 0.684134i
\(924\) 0 0
\(925\) −10.0000 17.3205i −0.328798 0.569495i
\(926\) 0 0
\(927\) 7.00000 12.1244i 0.229910 0.398216i
\(928\) 0 0
\(929\) −1.50000 + 2.59808i −0.0492134 + 0.0852401i −0.889583 0.456774i \(-0.849005\pi\)
0.840369 + 0.542014i \(0.182338\pi\)
\(930\) 0 0
\(931\) 14.0000 0.458831
\(932\) 0 0
\(933\) 10.0000 + 17.3205i 0.327385 + 0.567048i
\(934\) 0 0
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 55.0000 1.79677 0.898386 0.439207i \(-0.144741\pi\)
0.898386 + 0.439207i \(0.144741\pi\)
\(938\) 0 0
\(939\) 34.0000 + 58.8897i 1.10955 + 1.92179i
\(940\) 0 0
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 0 0
\(943\) 3.00000 5.19615i 0.0976934 0.169210i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.0000 + 32.9090i 0.617417 + 1.06940i 0.989955 + 0.141381i \(0.0451542\pi\)
−0.372538 + 0.928017i \(0.621512\pi\)
\(948\) 0 0
\(949\) −17.5000 + 18.1865i −0.568074 + 0.590360i
\(950\) 0 0
\(951\) −3.00000 5.19615i −0.0972817 0.168497i
\(952\) 0 0
\(953\) −21.0000 + 36.3731i −0.680257 + 1.17824i 0.294646 + 0.955607i \(0.404798\pi\)
−0.974902 + 0.222633i \(0.928535\pi\)
\(954\) 0 0
\(955\) −3.00000 + 5.19615i −0.0970777 + 0.168144i
\(956\) 0 0
\(957\) −40.0000 −1.29302
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) −10.5000 18.1865i −0.338007 0.585445i
\(966\) 0 0
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) 0 0
\(969\) 6.00000 10.3923i 0.192748 0.333849i
\(970\) 0 0
\(971\) −9.00000 + 15.5885i −0.288824 + 0.500257i −0.973529 0.228562i \(-0.926597\pi\)
0.684706 + 0.728820i \(0.259931\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −28.0000 6.92820i −0.896718 0.221880i
\(976\) 0 0
\(977\) 8.50000 + 14.7224i 0.271939 + 0.471012i 0.969358 0.245651i \(-0.0790017\pi\)
−0.697419 + 0.716663i \(0.745668\pi\)
\(978\) 0 0
\(979\) −28.0000 + 48.4974i −0.894884 + 1.54998i
\(980\) 0 0
\(981\) −5.00000 + 8.66025i −0.159638 + 0.276501i
\(982\) 0 0
\(983\) −18.0000 −0.574111 −0.287055 0.957914i \(-0.592676\pi\)
−0.287055 + 0.957914i \(0.592676\pi\)
\(984\) 0 0
\(985\) 9.00000 + 15.5885i 0.286764 + 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) 7.00000 12.1244i 0.221915 0.384368i
\(996\) 0 0
\(997\) −27.5000 + 47.6314i −0.870934 + 1.50850i −0.00990158 + 0.999951i \(0.503152\pi\)
−0.861032 + 0.508551i \(0.830182\pi\)
\(998\) 0 0
\(999\) −10.0000 17.3205i −0.316386 0.547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.i.b.705.1 2
4.3 odd 2 832.2.i.h.705.1 2
8.3 odd 2 416.2.i.a.289.1 2
8.5 even 2 416.2.i.b.289.1 yes 2
13.9 even 3 inner 832.2.i.b.321.1 2
52.35 odd 6 832.2.i.h.321.1 2
104.3 odd 6 5408.2.a.k.1.1 1
104.29 even 6 5408.2.a.d.1.1 1
104.35 odd 6 416.2.i.a.321.1 yes 2
104.61 even 6 416.2.i.b.321.1 yes 2
104.75 odd 6 5408.2.a.j.1.1 1
104.101 even 6 5408.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.a.289.1 2 8.3 odd 2
416.2.i.a.321.1 yes 2 104.35 odd 6
416.2.i.b.289.1 yes 2 8.5 even 2
416.2.i.b.321.1 yes 2 104.61 even 6
832.2.i.b.321.1 2 13.9 even 3 inner
832.2.i.b.705.1 2 1.1 even 1 trivial
832.2.i.h.321.1 2 52.35 odd 6
832.2.i.h.705.1 2 4.3 odd 2
5408.2.a.c.1.1 1 104.101 even 6
5408.2.a.d.1.1 1 104.29 even 6
5408.2.a.j.1.1 1 104.75 odd 6
5408.2.a.k.1.1 1 104.3 odd 6