Properties

Label 832.4.a
Level 832832
Weight 44
Character orbit 832.a
Rep. character χ832(1,)\chi_{832}(1,\cdot)
Character field Q\Q
Dimension 7272
Newform subspaces 3535
Sturm bound 448448
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 832.a (trivial)
Character field: Q\Q
Newform subspaces: 35 35
Sturm bound: 448448
Trace bound: 77
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(832))M_{4}(\Gamma_0(832)).

Total New Old
Modular forms 348 72 276
Cusp forms 324 72 252
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221313FrickeDim
++++++1919
++--1717
-++-1717
--++1919
Plus space++3838
Minus space-3434

Trace form

72q+648q9+1800q25+400q29+464q33+16q37+80q411968q45+3528q491568q53688q57+1824q61+2544q695408q77+6456q812832q85++2976q97+O(q100) 72 q + 648 q^{9} + 1800 q^{25} + 400 q^{29} + 464 q^{33} + 16 q^{37} + 80 q^{41} - 1968 q^{45} + 3528 q^{49} - 1568 q^{53} - 688 q^{57} + 1824 q^{61} + 2544 q^{69} - 5408 q^{77} + 6456 q^{81} - 2832 q^{85}+ \cdots + 2976 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(832))S_{4}^{\mathrm{new}}(\Gamma_0(832)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 13
832.4.a.a 832.a 1.a 11 49.09049.090 Q\Q None 13.4.a.a 00 7-7 77 1313 - ++ SU(2)\mathrm{SU}(2) q7q3+7q5+13q7+22q926q11+q-7q^{3}+7q^{5}+13q^{7}+22q^{9}-26q^{11}+\cdots
832.4.a.b 832.a 1.a 11 49.09049.090 Q\Q None 104.4.a.b 00 5-5 19-19 3-3 ++ - SU(2)\mathrm{SU}(2) q5q319q53q72q9+2q11+q-5q^{3}-19q^{5}-3q^{7}-2q^{9}+2q^{11}+\cdots
832.4.a.c 832.a 1.a 11 49.09049.090 Q\Q None 416.4.a.a 00 5-5 33 5-5 - ++ SU(2)\mathrm{SU}(2) q5q3+3q55q72q9+30q11+q-5q^{3}+3q^{5}-5q^{7}-2q^{9}+30q^{11}+\cdots
832.4.a.d 832.a 1.a 11 49.09049.090 Q\Q None 26.4.a.c 00 4-4 1818 2020 ++ ++ SU(2)\mathrm{SU}(2) q4q3+18q5+20q711q9+48q11+q-4q^{3}+18q^{5}+20q^{7}-11q^{9}+48q^{11}+\cdots
832.4.a.e 832.a 1.a 11 49.09049.090 Q\Q None 26.4.a.a 00 3-3 11-11 1919 ++ - SU(2)\mathrm{SU}(2) q3q311q5+19q718q9+38q11+q-3q^{3}-11q^{5}+19q^{7}-18q^{9}+38q^{11}+\cdots
832.4.a.f 832.a 1.a 11 49.09049.090 Q\Q None 52.4.a.a 00 3-3 1313 1111 - - SU(2)\mathrm{SU}(2) q3q3+13q5+11q718q92q11+q-3q^{3}+13q^{5}+11q^{7}-18q^{9}-2q^{11}+\cdots
832.4.a.g 832.a 1.a 11 49.09049.090 Q\Q None 26.4.a.b 00 1-1 17-17 3535 - ++ SU(2)\mathrm{SU}(2) qq317q5+35q726q9+2q11+q-q^{3}-17q^{5}+35q^{7}-26q^{9}+2q^{11}+\cdots
832.4.a.h 832.a 1.a 11 49.09049.090 Q\Q None 416.4.a.b 00 1-1 11 55 ++ - SU(2)\mathrm{SU}(2) qq3+q5+5q726q910q11+q-q^{3}+q^{5}+5q^{7}-26q^{9}-10q^{11}+\cdots
832.4.a.i 832.a 1.a 11 49.09049.090 Q\Q None 104.4.a.a 00 1-1 77 21-21 ++ ++ SU(2)\mathrm{SU}(2) qq3+7q521q726q96q11+q-q^{3}+7q^{5}-21q^{7}-26q^{9}-6q^{11}+\cdots
832.4.a.j 832.a 1.a 11 49.09049.090 Q\Q None 26.4.a.b 00 11 17-17 35-35 ++ ++ SU(2)\mathrm{SU}(2) q+q317q535q726q92q11+q+q^{3}-17q^{5}-35q^{7}-26q^{9}-2q^{11}+\cdots
832.4.a.k 832.a 1.a 11 49.09049.090 Q\Q None 416.4.a.b 00 11 11 5-5 ++ - SU(2)\mathrm{SU}(2) q+q3+q55q726q9+10q11+q+q^{3}+q^{5}-5q^{7}-26q^{9}+10q^{11}+\cdots
832.4.a.l 832.a 1.a 11 49.09049.090 Q\Q None 104.4.a.a 00 11 77 2121 - ++ SU(2)\mathrm{SU}(2) q+q3+7q5+21q726q9+6q11+q+q^{3}+7q^{5}+21q^{7}-26q^{9}+6q^{11}+\cdots
832.4.a.m 832.a 1.a 11 49.09049.090 Q\Q None 26.4.a.a 00 33 11-11 19-19 - - SU(2)\mathrm{SU}(2) q+3q311q519q718q938q11+q+3q^{3}-11q^{5}-19q^{7}-18q^{9}-38q^{11}+\cdots
832.4.a.n 832.a 1.a 11 49.09049.090 Q\Q None 52.4.a.a 00 33 1313 11-11 ++ - SU(2)\mathrm{SU}(2) q+3q3+13q511q718q9+2q11+q+3q^{3}+13q^{5}-11q^{7}-18q^{9}+2q^{11}+\cdots
832.4.a.o 832.a 1.a 11 49.09049.090 Q\Q None 26.4.a.c 00 44 1818 20-20 - ++ SU(2)\mathrm{SU}(2) q+4q3+18q520q711q948q11+q+4q^{3}+18q^{5}-20q^{7}-11q^{9}-48q^{11}+\cdots
832.4.a.p 832.a 1.a 11 49.09049.090 Q\Q None 104.4.a.b 00 55 19-19 33 - - SU(2)\mathrm{SU}(2) q+5q319q5+3q72q92q11+q+5q^{3}-19q^{5}+3q^{7}-2q^{9}-2q^{11}+\cdots
832.4.a.q 832.a 1.a 11 49.09049.090 Q\Q None 416.4.a.a 00 55 33 55 - ++ SU(2)\mathrm{SU}(2) q+5q3+3q5+5q72q930q11+q+5q^{3}+3q^{5}+5q^{7}-2q^{9}-30q^{11}+\cdots
832.4.a.r 832.a 1.a 11 49.09049.090 Q\Q None 13.4.a.a 00 77 77 13-13 ++ ++ SU(2)\mathrm{SU}(2) q+7q3+7q513q7+22q9+26q11+q+7q^{3}+7q^{5}-13q^{7}+22q^{9}+26q^{11}+\cdots
832.4.a.s 832.a 1.a 22 49.09049.090 Q(17)\Q(\sqrt{17}) None 13.4.a.b 00 5-5 33 9-9 ++ - SU(2)\mathrm{SU}(2) q+(13β)q3+(1+β)q5+(111β)q7+q+(-1-3\beta )q^{3}+(1+\beta )q^{5}+(1-11\beta )q^{7}+\cdots
832.4.a.t 832.a 1.a 22 49.09049.090 Q(217)\Q(\sqrt{217}) None 52.4.a.b 00 3-3 23-23 27-27 - ++ SU(2)\mathrm{SU}(2) q+(1β)q3+(11β)q5+(13+)q7+q+(-1-\beta )q^{3}+(-11-\beta )q^{5}+(-13+\cdots)q^{7}+\cdots
832.4.a.u 832.a 1.a 22 49.09049.090 Q(73)\Q(\sqrt{73}) None 104.4.a.c 00 3-3 33 2525 - - SU(2)\mathrm{SU}(2) q+(1β)q3+(33β)q5+(13β)q7+q+(-1-\beta )q^{3}+(3-3\beta )q^{5}+(13-\beta )q^{7}+\cdots
832.4.a.v 832.a 1.a 22 49.09049.090 Q(321)\Q(\sqrt{321}) None 104.4.a.d 00 1-1 1111 1-1 - - SU(2)\mathrm{SU}(2) qβq3+(6β)q5+(2+3β)q7+q-\beta q^{3}+(6-\beta )q^{5}+(-2+3\beta )q^{7}+\cdots
832.4.a.w 832.a 1.a 22 49.09049.090 Q(321)\Q(\sqrt{321}) None 104.4.a.d 00 11 1111 11 ++ - SU(2)\mathrm{SU}(2) q+βq3+(6β)q5+(23β)q7+(53+)q9+q+\beta q^{3}+(6-\beta )q^{5}+(2-3\beta )q^{7}+(53+\cdots)q^{9}+\cdots
832.4.a.x 832.a 1.a 22 49.09049.090 Q(217)\Q(\sqrt{217}) None 52.4.a.b 00 33 23-23 2727 ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q3+(11β)q5+(13+β)q7+q+(1+\beta )q^{3}+(-11-\beta )q^{5}+(13+\beta )q^{7}+\cdots
832.4.a.y 832.a 1.a 22 49.09049.090 Q(73)\Q(\sqrt{73}) None 104.4.a.c 00 33 33 25-25 ++ - SU(2)\mathrm{SU}(2) q+(1+β)q3+(33β)q5+(13+β)q7+q+(1+\beta )q^{3}+(3-3\beta )q^{5}+(-13+\beta )q^{7}+\cdots
832.4.a.z 832.a 1.a 22 49.09049.090 Q(17)\Q(\sqrt{17}) None 13.4.a.b 00 55 33 99 - - SU(2)\mathrm{SU}(2) q+(1+3β)q3+(1+β)q5+(1+11β)q7+q+(1+3\beta )q^{3}+(1+\beta )q^{5}+(-1+11\beta )q^{7}+\cdots
832.4.a.ba 832.a 1.a 33 49.09049.090 3.3.24965.1 None 416.4.a.e 00 4-4 16-16 26-26 ++ - SU(2)\mathrm{SU}(2) q+(1β2)q3+(6β1+β2)q5+q+(-1-\beta _{2})q^{3}+(-6-\beta _{1}+\beta _{2})q^{5}+\cdots
832.4.a.bb 832.a 1.a 33 49.09049.090 3.3.18257.1 None 104.4.a.e 00 00 88 36-36 - ++ SU(2)\mathrm{SU}(2) qβ1q3+(3+2β1+β2)q5+(12+)q7+q-\beta _{1}q^{3}+(3+2\beta _{1}+\beta _{2})q^{5}+(-12+\cdots)q^{7}+\cdots
832.4.a.bc 832.a 1.a 33 49.09049.090 3.3.18257.1 None 104.4.a.e 00 00 88 3636 ++ ++ SU(2)\mathrm{SU}(2) q+β1q3+(3+2β1+β2)q5+(12+β1+)q7+q+\beta _{1}q^{3}+(3+2\beta _{1}+\beta _{2})q^{5}+(12+\beta _{1}+\cdots)q^{7}+\cdots
832.4.a.bd 832.a 1.a 33 49.09049.090 3.3.24965.1 None 416.4.a.e 00 44 16-16 2626 ++ - SU(2)\mathrm{SU}(2) q+(1+β2)q3+(6β1+β2)q5+q+(1+\beta _{2})q^{3}+(-6-\beta _{1}+\beta _{2})q^{5}+\cdots
832.4.a.be 832.a 1.a 44 49.09049.090 4.4.1847677.1 None 416.4.a.g 00 00 1414 00 - - SU(2)\mathrm{SU}(2) qβ3q3+(3β2)q5+(β1β3)q7+q-\beta _{3}q^{3}+(3-\beta _{2})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots
832.4.a.bf 832.a 1.a 55 49.09049.090 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 416.4.a.h 00 11-11 55 2121 ++ ++ SU(2)\mathrm{SU}(2) q+(2+β2)q3+(1β1)q5+(4+β1+)q7+q+(-2+\beta _{2})q^{3}+(1-\beta _{1})q^{5}+(4+\beta _{1}+\cdots)q^{7}+\cdots
832.4.a.bg 832.a 1.a 55 49.09049.090 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 416.4.a.h 00 1111 55 21-21 ++ ++ SU(2)\mathrm{SU}(2) q+(2β2)q3+(1β1)q5+(4β1+)q7+q+(2-\beta _{2})q^{3}+(1-\beta _{1})q^{5}+(-4-\beta _{1}+\cdots)q^{7}+\cdots
832.4.a.bh 832.a 1.a 66 49.09049.090 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 416.4.a.k 00 00 16-16 00 - ++ SU(2)\mathrm{SU}(2) q+β1q3+(3+β5)q5+(2β1β4+)q7+q+\beta _{1}q^{3}+(-3+\beta _{5})q^{5}+(-2\beta _{1}-\beta _{4}+\cdots)q^{7}+\cdots
832.4.a.bi 832.a 1.a 66 49.09049.090 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 416.4.a.j 00 00 1616 00 - - SU(2)\mathrm{SU}(2) qβ3q3+(3+β1)q5β4q7+(20+)q9+q-\beta _{3}q^{3}+(3+\beta _{1})q^{5}-\beta _{4}q^{7}+(20+\cdots)q^{9}+\cdots

Decomposition of S4old(Γ0(832))S_{4}^{\mathrm{old}}(\Gamma_0(832)) into lower level spaces