Properties

Label 832.6
Level 832
Weight 6
Dimension 59518
Nonzero newspaces 28
Sturm bound 258048
Trace bound 17

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(258048\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(832))\).

Total New Old
Modular forms 108384 60002 48382
Cusp forms 106656 59518 47138
Eisenstein series 1728 484 1244

Trace form

\( 59518 q - 80 q^{2} - 60 q^{3} - 80 q^{4} - 80 q^{5} - 80 q^{6} - 56 q^{7} - 80 q^{8} + 386 q^{9} - 80 q^{10} - 1268 q^{11} - 80 q^{12} + 144 q^{13} - 176 q^{14} + 3536 q^{15} - 80 q^{16} + 1476 q^{17} - 80 q^{18}+ \cdots - 597484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(832))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
832.6.a \(\chi_{832}(1, \cdot)\) 832.6.a.a 1 1
832.6.a.b 1
832.6.a.c 1
832.6.a.d 1
832.6.a.e 1
832.6.a.f 1
832.6.a.g 1
832.6.a.h 1
832.6.a.i 2
832.6.a.j 2
832.6.a.k 2
832.6.a.l 2
832.6.a.m 2
832.6.a.n 2
832.6.a.o 2
832.6.a.p 2
832.6.a.q 3
832.6.a.r 3
832.6.a.s 3
832.6.a.t 3
832.6.a.u 3
832.6.a.v 3
832.6.a.w 4
832.6.a.x 4
832.6.a.y 5
832.6.a.z 5
832.6.a.ba 6
832.6.a.bb 6
832.6.a.bc 7
832.6.a.bd 7
832.6.a.be 8
832.6.a.bf 8
832.6.a.bg 8
832.6.a.bh 10
832.6.b \(\chi_{832}(417, \cdot)\) n/a 120 1
832.6.e \(\chi_{832}(545, \cdot)\) n/a 140 1
832.6.f \(\chi_{832}(129, \cdot)\) n/a 138 1
832.6.i \(\chi_{832}(321, \cdot)\) n/a 276 2
832.6.k \(\chi_{832}(255, \cdot)\) n/a 276 2
832.6.l \(\chi_{832}(239, \cdot)\) n/a 276 2
832.6.n \(\chi_{832}(209, \cdot)\) n/a 240 2
832.6.p \(\chi_{832}(337, \cdot)\) n/a 276 2
832.6.s \(\chi_{832}(47, \cdot)\) n/a 276 2
832.6.u \(\chi_{832}(31, \cdot)\) n/a 280 2
832.6.w \(\chi_{832}(257, \cdot)\) n/a 276 2
832.6.z \(\chi_{832}(289, \cdot)\) n/a 280 2
832.6.ba \(\chi_{832}(225, \cdot)\) n/a 280 2
832.6.bd \(\chi_{832}(343, \cdot)\) None 0 4
832.6.bf \(\chi_{832}(105, \cdot)\) None 0 4
832.6.bg \(\chi_{832}(25, \cdot)\) None 0 4
832.6.bi \(\chi_{832}(135, \cdot)\) None 0 4
832.6.bk \(\chi_{832}(223, \cdot)\) n/a 560 4
832.6.bn \(\chi_{832}(175, \cdot)\) n/a 552 4
832.6.bp \(\chi_{832}(17, \cdot)\) n/a 552 4
832.6.br \(\chi_{832}(81, \cdot)\) n/a 552 4
832.6.bs \(\chi_{832}(15, \cdot)\) n/a 552 4
832.6.bu \(\chi_{832}(63, \cdot)\) n/a 552 4
832.6.bw \(\chi_{832}(99, \cdot)\) n/a 4464 8
832.6.by \(\chi_{832}(53, \cdot)\) n/a 3840 8
832.6.cb \(\chi_{832}(77, \cdot)\) n/a 4464 8
832.6.cc \(\chi_{832}(83, \cdot)\) n/a 4464 8
832.6.cf \(\chi_{832}(71, \cdot)\) None 0 8
832.6.ch \(\chi_{832}(121, \cdot)\) None 0 8
832.6.ci \(\chi_{832}(9, \cdot)\) None 0 8
832.6.ck \(\chi_{832}(7, \cdot)\) None 0 8
832.6.cn \(\chi_{832}(11, \cdot)\) n/a 8928 16
832.6.cp \(\chi_{832}(29, \cdot)\) n/a 8928 16
832.6.cq \(\chi_{832}(69, \cdot)\) n/a 8928 16
832.6.ct \(\chi_{832}(115, \cdot)\) n/a 8928 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(832))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(832)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(832))\)\(^{\oplus 1}\)