Defining parameters
Level: | \( N \) | \(=\) | \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8325.q (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 555 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(2280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8325, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2328 | 456 | 1872 |
Cusp forms | 2232 | 456 | 1776 |
Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(8325, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8325, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1665, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2775, [\chi])\)\(^{\oplus 2}\)