Defining parameters
Level: | \( N \) | \(=\) | \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8325.y (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Sturm bound: | \(2280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8325, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4592 | 1800 | 2792 |
Cusp forms | 4528 | 1800 | 2728 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{new}}(8325, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8325, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8325, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(925, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2775, [\chi])\)\(^{\oplus 2}\)