Properties

Label 833.2.l
Level 833833
Weight 22
Character orbit 833.l
Rep. character χ833(246,)\chi_{833}(246,\cdot)
Character field Q(ζ8)\Q(\zeta_{8})
Dimension 228228
Newform subspaces 77
Sturm bound 168168
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 833=7217 833 = 7^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 833.l (of order 88 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 17 17
Character field: Q(ζ8)\Q(\zeta_{8})
Newform subspaces: 7 7
Sturm bound: 168168
Trace bound: 66
Distinguishing TpT_p: 22, 33

Dimensions

The following table gives the dimensions of various subspaces of M2(833,[χ])M_{2}(833, [\chi]).

Total New Old
Modular forms 368 268 100
Cusp forms 304 228 76
Eisenstein series 64 40 24

Trace form

228q+4q2+4q3+12q628q8+16q9+12q10+12q1120q1216q15172q168q17+36q18+16q1920q2036q2212q2352q24+164q99+O(q100) 228 q + 4 q^{2} + 4 q^{3} + 12 q^{6} - 28 q^{8} + 16 q^{9} + 12 q^{10} + 12 q^{11} - 20 q^{12} - 16 q^{15} - 172 q^{16} - 8 q^{17} + 36 q^{18} + 16 q^{19} - 20 q^{20} - 36 q^{22} - 12 q^{23} - 52 q^{24}+ \cdots - 164 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(833,[χ])S_{2}^{\mathrm{new}}(833, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
833.2.l.a 833.l 17.d 44 6.6526.652 Q(ζ8)\Q(\zeta_{8}) None 17.2.d.a 4-4 44 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}] q+(1+ζ82ζ83)q2+(1+ζ8+ζ82+)q3+q+(-1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(1+\zeta_{8}+\zeta_{8}^{2}+\cdots)q^{3}+\cdots
833.2.l.b 833.l 17.d 3232 6.6526.652 None 833.2.l.b 00 00 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]
833.2.l.c 833.l 17.d 3232 6.6526.652 None 119.2.k.a 00 00 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]
833.2.l.d 833.l 17.d 4040 6.6526.652 None 833.2.l.d 00 4-4 8-8 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]
833.2.l.e 833.l 17.d 4040 6.6526.652 None 833.2.l.d 00 44 88 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]
833.2.l.f 833.l 17.d 4040 6.6526.652 None 119.2.q.a 44 4-4 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]
833.2.l.g 833.l 17.d 4040 6.6526.652 None 119.2.q.a 44 44 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]

Decomposition of S2old(833,[χ])S_{2}^{\mathrm{old}}(833, [\chi]) into lower level spaces

S2old(833,[χ]) S_{2}^{\mathrm{old}}(833, [\chi]) \simeq S2new(17,[χ])S_{2}^{\mathrm{new}}(17, [\chi])3^{\oplus 3}\oplusS2new(119,[χ])S_{2}^{\mathrm{new}}(119, [\chi])2^{\oplus 2}