Properties

Label 833.2.l
Level $833$
Weight $2$
Character orbit 833.l
Rep. character $\chi_{833}(246,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $228$
Newform subspaces $7$
Sturm bound $168$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.l (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 7 \)
Sturm bound: \(168\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(833, [\chi])\).

Total New Old
Modular forms 368 268 100
Cusp forms 304 228 76
Eisenstein series 64 40 24

Trace form

\( 228 q + 4 q^{2} + 4 q^{3} + 12 q^{6} - 28 q^{8} + 16 q^{9} + 12 q^{10} + 12 q^{11} - 20 q^{12} - 16 q^{15} - 172 q^{16} - 8 q^{17} + 36 q^{18} + 16 q^{19} - 20 q^{20} - 36 q^{22} - 12 q^{23} - 52 q^{24}+ \cdots - 164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(833, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
833.2.l.a 833.l 17.d $4$ $6.652$ \(\Q(\zeta_{8})\) None 17.2.d.a \(-4\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(1+\zeta_{8}+\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
833.2.l.b 833.l 17.d $32$ $6.652$ None 833.2.l.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
833.2.l.c 833.l 17.d $32$ $6.652$ None 119.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
833.2.l.d 833.l 17.d $40$ $6.652$ None 833.2.l.d \(0\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{8}]$
833.2.l.e 833.l 17.d $40$ $6.652$ None 833.2.l.d \(0\) \(4\) \(8\) \(0\) $\mathrm{SU}(2)[C_{8}]$
833.2.l.f 833.l 17.d $40$ $6.652$ None 119.2.q.a \(4\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
833.2.l.g 833.l 17.d $40$ $6.652$ None 119.2.q.a \(4\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(833, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(833, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 2}\)