Defining parameters
Level: | \( N \) | \(=\) | \( 833 = 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 833.l (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(833, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 368 | 268 | 100 |
Cusp forms | 304 | 228 | 76 |
Eisenstein series | 64 | 40 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(833, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
833.2.l.a | $4$ | $6.652$ | \(\Q(\zeta_{8})\) | None | \(-4\) | \(4\) | \(0\) | \(0\) | \(q+(-1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(1+\zeta_{8}+\zeta_{8}^{2}+\cdots)q^{3}+\cdots\) |
833.2.l.b | $32$ | $6.652$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
833.2.l.c | $32$ | $6.652$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
833.2.l.d | $40$ | $6.652$ | None | \(0\) | \(-4\) | \(-8\) | \(0\) | ||
833.2.l.e | $40$ | $6.652$ | None | \(0\) | \(4\) | \(8\) | \(0\) | ||
833.2.l.f | $40$ | $6.652$ | None | \(4\) | \(-4\) | \(0\) | \(0\) | ||
833.2.l.g | $40$ | $6.652$ | None | \(4\) | \(4\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(833, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(833, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 2}\)