Properties

Label 84.6.i.b.37.2
Level $84$
Weight $6$
Character 84.37
Analytic conductor $13.472$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,6,Mod(25,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 84.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4722408643\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.2
Root \(21.2872 - 36.8705i\) of defining polynomial
Character \(\chi\) \(=\) 84.37
Dual form 84.6.i.b.25.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 - 7.79423i) q^{3} +(9.28717 - 16.0858i) q^{5} +(-127.649 + 22.6454i) q^{7} +(-40.5000 + 70.1481i) q^{9} +(80.7128 + 139.799i) q^{11} +14.1283 q^{13} -167.169 q^{15} +(382.851 + 663.118i) q^{17} +(-707.146 + 1224.81i) q^{19} +(750.923 + 893.019i) q^{21} +(-2092.72 + 3624.69i) q^{23} +(1390.00 + 2407.55i) q^{25} +729.000 q^{27} -4202.60 q^{29} +(1193.68 + 2067.51i) q^{31} +(726.415 - 1258.19i) q^{33} +(-821.224 + 2263.65i) q^{35} +(336.469 - 582.782i) q^{37} +(-63.5774 - 110.119i) q^{39} -4173.45 q^{41} -5430.94 q^{43} +(752.261 + 1302.95i) q^{45} +(-3151.34 + 5458.28i) q^{47} +(15781.4 - 5781.32i) q^{49} +(3445.66 - 5968.06i) q^{51} +(-8208.34 - 14217.3i) q^{53} +2998.37 q^{55} +12728.6 q^{57} +(-1983.24 - 3435.08i) q^{59} +(25169.4 - 43594.6i) q^{61} +(3581.24 - 9871.45i) q^{63} +(131.212 - 227.266i) q^{65} +(-6822.63 - 11817.1i) q^{67} +37668.9 q^{69} -83957.2 q^{71} +(14289.2 + 24749.6i) q^{73} +(12510.0 - 21667.9i) q^{75} +(-13468.7 - 16017.3i) q^{77} +(29977.7 - 51923.0i) q^{79} +(-3280.50 - 5681.99i) q^{81} -61583.0 q^{83} +14222.4 q^{85} +(18911.7 + 32756.0i) q^{87} +(-21149.2 + 36631.4i) q^{89} +(-1803.46 + 319.941i) q^{91} +(10743.1 - 18607.6i) q^{93} +(13134.8 + 22750.1i) q^{95} +44638.1 q^{97} -13075.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{3} - 47 q^{5} - 174 q^{7} - 162 q^{9} + 407 q^{11} + 898 q^{13} + 846 q^{15} + 1868 q^{17} + 1463 q^{19} - 783 q^{21} + 44 q^{23} + 1605 q^{25} + 2916 q^{27} + 1534 q^{29} + 11170 q^{31} + 3663 q^{33}+ \cdots - 65934 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) 0 0
\(5\) 9.28717 16.0858i 0.166134 0.287752i −0.770923 0.636928i \(-0.780205\pi\)
0.937057 + 0.349175i \(0.113538\pi\)
\(6\) 0 0
\(7\) −127.649 + 22.6454i −0.984626 + 0.174677i
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 80.7128 + 139.799i 0.201123 + 0.348355i 0.948890 0.315606i \(-0.102208\pi\)
−0.747768 + 0.663960i \(0.768874\pi\)
\(12\) 0 0
\(13\) 14.1283 0.0231863 0.0115932 0.999933i \(-0.496310\pi\)
0.0115932 + 0.999933i \(0.496310\pi\)
\(14\) 0 0
\(15\) −167.169 −0.191835
\(16\) 0 0
\(17\) 382.851 + 663.118i 0.321298 + 0.556504i 0.980756 0.195237i \(-0.0625476\pi\)
−0.659458 + 0.751741i \(0.729214\pi\)
\(18\) 0 0
\(19\) −707.146 + 1224.81i −0.449392 + 0.778369i −0.998346 0.0574830i \(-0.981693\pi\)
0.548955 + 0.835852i \(0.315026\pi\)
\(20\) 0 0
\(21\) 750.923 + 893.019i 0.371575 + 0.441888i
\(22\) 0 0
\(23\) −2092.72 + 3624.69i −0.824880 + 1.42873i 0.0771305 + 0.997021i \(0.475424\pi\)
−0.902011 + 0.431713i \(0.857909\pi\)
\(24\) 0 0
\(25\) 1390.00 + 2407.55i 0.444799 + 0.770415i
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4202.60 −0.927947 −0.463974 0.885849i \(-0.653577\pi\)
−0.463974 + 0.885849i \(0.653577\pi\)
\(30\) 0 0
\(31\) 1193.68 + 2067.51i 0.223091 + 0.386405i 0.955745 0.294196i \(-0.0950520\pi\)
−0.732654 + 0.680601i \(0.761719\pi\)
\(32\) 0 0
\(33\) 726.415 1258.19i 0.116118 0.201123i
\(34\) 0 0
\(35\) −821.224 + 2263.65i −0.113316 + 0.312348i
\(36\) 0 0
\(37\) 336.469 582.782i 0.0404056 0.0699845i −0.845115 0.534584i \(-0.820468\pi\)
0.885521 + 0.464599i \(0.153802\pi\)
\(38\) 0 0
\(39\) −63.5774 110.119i −0.00669331 0.0115932i
\(40\) 0 0
\(41\) −4173.45 −0.387735 −0.193868 0.981028i \(-0.562103\pi\)
−0.193868 + 0.981028i \(0.562103\pi\)
\(42\) 0 0
\(43\) −5430.94 −0.447923 −0.223962 0.974598i \(-0.571899\pi\)
−0.223962 + 0.974598i \(0.571899\pi\)
\(44\) 0 0
\(45\) 752.261 + 1302.95i 0.0553780 + 0.0959175i
\(46\) 0 0
\(47\) −3151.34 + 5458.28i −0.208090 + 0.360422i −0.951113 0.308844i \(-0.900058\pi\)
0.743023 + 0.669266i \(0.233391\pi\)
\(48\) 0 0
\(49\) 15781.4 5781.32i 0.938976 0.343983i
\(50\) 0 0
\(51\) 3445.66 5968.06i 0.185501 0.321298i
\(52\) 0 0
\(53\) −8208.34 14217.3i −0.401389 0.695226i 0.592505 0.805567i \(-0.298139\pi\)
−0.993894 + 0.110341i \(0.964806\pi\)
\(54\) 0 0
\(55\) 2998.37 0.133653
\(56\) 0 0
\(57\) 12728.6 0.518913
\(58\) 0 0
\(59\) −1983.24 3435.08i −0.0741731 0.128472i 0.826553 0.562858i \(-0.190298\pi\)
−0.900726 + 0.434387i \(0.856965\pi\)
\(60\) 0 0
\(61\) 25169.4 43594.6i 0.866059 1.50006i 6.72450e−5 1.00000i \(-0.499979\pi\)
0.865992 0.500058i \(-0.166688\pi\)
\(62\) 0 0
\(63\) 3581.24 9871.45i 0.113679 0.313350i
\(64\) 0 0
\(65\) 131.212 227.266i 0.00385203 0.00667192i
\(66\) 0 0
\(67\) −6822.63 11817.1i −0.185680 0.321607i 0.758126 0.652109i \(-0.226115\pi\)
−0.943805 + 0.330502i \(0.892782\pi\)
\(68\) 0 0
\(69\) 37668.9 0.952490
\(70\) 0 0
\(71\) −83957.2 −1.97657 −0.988284 0.152624i \(-0.951228\pi\)
−0.988284 + 0.152624i \(0.951228\pi\)
\(72\) 0 0
\(73\) 14289.2 + 24749.6i 0.313834 + 0.543576i 0.979189 0.202951i \(-0.0650532\pi\)
−0.665355 + 0.746527i \(0.731720\pi\)
\(74\) 0 0
\(75\) 12510.0 21667.9i 0.256805 0.444799i
\(76\) 0 0
\(77\) −13468.7 16017.3i −0.258880 0.307867i
\(78\) 0 0
\(79\) 29977.7 51923.0i 0.540420 0.936034i −0.458460 0.888715i \(-0.651599\pi\)
0.998880 0.0473193i \(-0.0150678\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −61583.0 −0.981219 −0.490610 0.871380i \(-0.663226\pi\)
−0.490610 + 0.871380i \(0.663226\pi\)
\(84\) 0 0
\(85\) 14222.4 0.213514
\(86\) 0 0
\(87\) 18911.7 + 32756.0i 0.267875 + 0.463974i
\(88\) 0 0
\(89\) −21149.2 + 36631.4i −0.283021 + 0.490206i −0.972127 0.234454i \(-0.924670\pi\)
0.689107 + 0.724660i \(0.258003\pi\)
\(90\) 0 0
\(91\) −1803.46 + 319.941i −0.0228298 + 0.00405011i
\(92\) 0 0
\(93\) 10743.1 18607.6i 0.128802 0.223091i
\(94\) 0 0
\(95\) 13134.8 + 22750.1i 0.149318 + 0.258627i
\(96\) 0 0
\(97\) 44638.1 0.481700 0.240850 0.970562i \(-0.422574\pi\)
0.240850 + 0.970562i \(0.422574\pi\)
\(98\) 0 0
\(99\) −13075.5 −0.134082
\(100\) 0 0
\(101\) 55962.2 + 96929.4i 0.545873 + 0.945480i 0.998551 + 0.0538058i \(0.0171352\pi\)
−0.452678 + 0.891674i \(0.649531\pi\)
\(102\) 0 0
\(103\) −83474.6 + 144582.i −0.775285 + 1.34283i 0.159350 + 0.987222i \(0.449060\pi\)
−0.934634 + 0.355610i \(0.884273\pi\)
\(104\) 0 0
\(105\) 21338.9 3785.61i 0.188886 0.0335091i
\(106\) 0 0
\(107\) −51492.8 + 89188.2i −0.434798 + 0.753092i −0.997279 0.0737182i \(-0.976513\pi\)
0.562481 + 0.826810i \(0.309847\pi\)
\(108\) 0 0
\(109\) 68910.6 + 119357.i 0.555546 + 0.962233i 0.997861 + 0.0653736i \(0.0208239\pi\)
−0.442315 + 0.896860i \(0.645843\pi\)
\(110\) 0 0
\(111\) −6056.45 −0.0466563
\(112\) 0 0
\(113\) −129967. −0.957495 −0.478748 0.877953i \(-0.658909\pi\)
−0.478748 + 0.877953i \(0.658909\pi\)
\(114\) 0 0
\(115\) 38870.8 + 67326.3i 0.274081 + 0.474723i
\(116\) 0 0
\(117\) −572.196 + 991.073i −0.00386439 + 0.00669331i
\(118\) 0 0
\(119\) −63887.0 75976.3i −0.413567 0.491825i
\(120\) 0 0
\(121\) 67496.4 116907.i 0.419099 0.725901i
\(122\) 0 0
\(123\) 18780.5 + 32528.8i 0.111929 + 0.193868i
\(124\) 0 0
\(125\) 109681. 0.627853
\(126\) 0 0
\(127\) −243265. −1.33835 −0.669177 0.743103i \(-0.733353\pi\)
−0.669177 + 0.743103i \(0.733353\pi\)
\(128\) 0 0
\(129\) 24439.2 + 42330.0i 0.129304 + 0.223962i
\(130\) 0 0
\(131\) −97167.8 + 168300.i −0.494703 + 0.856850i −0.999981 0.00610601i \(-0.998056\pi\)
0.505279 + 0.862956i \(0.331390\pi\)
\(132\) 0 0
\(133\) 62529.8 172359.i 0.306519 0.844900i
\(134\) 0 0
\(135\) 6770.35 11726.6i 0.0319725 0.0553780i
\(136\) 0 0
\(137\) 1546.85 + 2679.22i 0.00704121 + 0.0121957i 0.869525 0.493890i \(-0.164425\pi\)
−0.862483 + 0.506085i \(0.831092\pi\)
\(138\) 0 0
\(139\) 22600.4 0.0992155 0.0496078 0.998769i \(-0.484203\pi\)
0.0496078 + 0.998769i \(0.484203\pi\)
\(140\) 0 0
\(141\) 56724.1 0.240281
\(142\) 0 0
\(143\) 1140.34 + 1975.12i 0.00466329 + 0.00807706i
\(144\) 0 0
\(145\) −39030.3 + 67602.4i −0.154164 + 0.267019i
\(146\) 0 0
\(147\) −116077. 96987.7i −0.443050 0.370189i
\(148\) 0 0
\(149\) 176397. 305529.i 0.650917 1.12742i −0.331983 0.943285i \(-0.607718\pi\)
0.982901 0.184137i \(-0.0589489\pi\)
\(150\) 0 0
\(151\) −72548.2 125657.i −0.258931 0.448482i 0.707025 0.707189i \(-0.250037\pi\)
−0.965956 + 0.258707i \(0.916704\pi\)
\(152\) 0 0
\(153\) −62021.9 −0.214199
\(154\) 0 0
\(155\) 44343.5 0.148252
\(156\) 0 0
\(157\) 108948. + 188703.i 0.352751 + 0.610983i 0.986730 0.162367i \(-0.0519128\pi\)
−0.633979 + 0.773350i \(0.718579\pi\)
\(158\) 0 0
\(159\) −73875.0 + 127955.i −0.231742 + 0.401389i
\(160\) 0 0
\(161\) 185050. 510078.i 0.562632 1.55086i
\(162\) 0 0
\(163\) 161055. 278956.i 0.474795 0.822370i −0.524788 0.851233i \(-0.675855\pi\)
0.999583 + 0.0288633i \(0.00918874\pi\)
\(164\) 0 0
\(165\) −13492.7 23370.0i −0.0385823 0.0668266i
\(166\) 0 0
\(167\) 707392. 1.96277 0.981384 0.192056i \(-0.0615155\pi\)
0.981384 + 0.192056i \(0.0615155\pi\)
\(168\) 0 0
\(169\) −371093. −0.999462
\(170\) 0 0
\(171\) −57278.8 99209.8i −0.149797 0.259456i
\(172\) 0 0
\(173\) 85253.7 147664.i 0.216570 0.375110i −0.737187 0.675689i \(-0.763846\pi\)
0.953757 + 0.300579i \(0.0971798\pi\)
\(174\) 0 0
\(175\) −231951. 275843.i −0.572534 0.680874i
\(176\) 0 0
\(177\) −17849.2 + 30915.7i −0.0428238 + 0.0741731i
\(178\) 0 0
\(179\) 207703. + 359752.i 0.484519 + 0.839211i 0.999842 0.0177851i \(-0.00566148\pi\)
−0.515323 + 0.856996i \(0.672328\pi\)
\(180\) 0 0
\(181\) −1162.38 −0.00263726 −0.00131863 0.999999i \(-0.500420\pi\)
−0.00131863 + 0.999999i \(0.500420\pi\)
\(182\) 0 0
\(183\) −453048. −1.00004
\(184\) 0 0
\(185\) −6249.70 10824.8i −0.0134255 0.0232536i
\(186\) 0 0
\(187\) −61802.0 + 107044.i −0.129241 + 0.223851i
\(188\) 0 0
\(189\) −93055.9 + 16508.5i −0.189491 + 0.0336166i
\(190\) 0 0
\(191\) 372807. 645721.i 0.739436 1.28074i −0.213313 0.976984i \(-0.568425\pi\)
0.952749 0.303757i \(-0.0982412\pi\)
\(192\) 0 0
\(193\) 99186.5 + 171796.i 0.191672 + 0.331986i 0.945805 0.324737i \(-0.105276\pi\)
−0.754132 + 0.656722i \(0.771942\pi\)
\(194\) 0 0
\(195\) −2361.82 −0.00444795
\(196\) 0 0
\(197\) −469368. −0.861684 −0.430842 0.902427i \(-0.641783\pi\)
−0.430842 + 0.902427i \(0.641783\pi\)
\(198\) 0 0
\(199\) 96796.7 + 167657.i 0.173272 + 0.300116i 0.939562 0.342379i \(-0.111233\pi\)
−0.766290 + 0.642495i \(0.777899\pi\)
\(200\) 0 0
\(201\) −61403.7 + 106354.i −0.107202 + 0.185680i
\(202\) 0 0
\(203\) 536457. 95169.7i 0.913681 0.162091i
\(204\) 0 0
\(205\) −38759.5 + 67133.4i −0.0644160 + 0.111572i
\(206\) 0 0
\(207\) −169510. 293600.i −0.274960 0.476245i
\(208\) 0 0
\(209\) −228303. −0.361531
\(210\) 0 0
\(211\) −298066. −0.460900 −0.230450 0.973084i \(-0.574020\pi\)
−0.230450 + 0.973084i \(0.574020\pi\)
\(212\) 0 0
\(213\) 377807. + 654381.i 0.570586 + 0.988284i
\(214\) 0 0
\(215\) −50438.0 + 87361.3i −0.0744153 + 0.128891i
\(216\) 0 0
\(217\) −199191. 236883.i −0.287157 0.341495i
\(218\) 0 0
\(219\) 128602. 222746.i 0.181192 0.313834i
\(220\) 0 0
\(221\) 5409.04 + 9368.73i 0.00744971 + 0.0129033i
\(222\) 0 0
\(223\) −187215. −0.252103 −0.126051 0.992024i \(-0.540230\pi\)
−0.126051 + 0.992024i \(0.540230\pi\)
\(224\) 0 0
\(225\) −225180. −0.296533
\(226\) 0 0
\(227\) 669482. + 1.15958e6i 0.862332 + 1.49360i 0.869672 + 0.493630i \(0.164330\pi\)
−0.00734045 + 0.999973i \(0.502337\pi\)
\(228\) 0 0
\(229\) −475828. + 824158.i −0.599600 + 1.03854i 0.393280 + 0.919419i \(0.371340\pi\)
−0.992880 + 0.119119i \(0.961993\pi\)
\(230\) 0 0
\(231\) −64233.8 + 177056.i −0.0792015 + 0.218314i
\(232\) 0 0
\(233\) −371709. + 643820.i −0.448553 + 0.776917i −0.998292 0.0584197i \(-0.981394\pi\)
0.549739 + 0.835336i \(0.314727\pi\)
\(234\) 0 0
\(235\) 58534.0 + 101384.i 0.0691415 + 0.119757i
\(236\) 0 0
\(237\) −539599. −0.624023
\(238\) 0 0
\(239\) −625847. −0.708718 −0.354359 0.935110i \(-0.615301\pi\)
−0.354359 + 0.935110i \(0.615301\pi\)
\(240\) 0 0
\(241\) 666411. + 1.15426e6i 0.739094 + 1.28015i 0.952904 + 0.303273i \(0.0980793\pi\)
−0.213810 + 0.976875i \(0.568587\pi\)
\(242\) 0 0
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 53566.9 307549.i 0.0570140 0.327340i
\(246\) 0 0
\(247\) −9990.77 + 17304.5i −0.0104197 + 0.0180475i
\(248\) 0 0
\(249\) 277124. + 479992.i 0.283254 + 0.490610i
\(250\) 0 0
\(251\) 1.78809e6 1.79145 0.895726 0.444606i \(-0.146656\pi\)
0.895726 + 0.444606i \(0.146656\pi\)
\(252\) 0 0
\(253\) −675636. −0.663608
\(254\) 0 0
\(255\) −64000.9 110853.i −0.0616362 0.106757i
\(256\) 0 0
\(257\) −254462. + 440741.i −0.240320 + 0.416247i −0.960805 0.277224i \(-0.910586\pi\)
0.720485 + 0.693470i \(0.243919\pi\)
\(258\) 0 0
\(259\) −29752.5 + 82010.9i −0.0275597 + 0.0759665i
\(260\) 0 0
\(261\) 170205. 294804.i 0.154658 0.267875i
\(262\) 0 0
\(263\) 168247. + 291412.i 0.149988 + 0.259787i 0.931223 0.364450i \(-0.118743\pi\)
−0.781235 + 0.624237i \(0.785410\pi\)
\(264\) 0 0
\(265\) −304929. −0.266737
\(266\) 0 0
\(267\) 380685. 0.326804
\(268\) 0 0
\(269\) −747765. 1.29517e6i −0.630064 1.09130i −0.987538 0.157379i \(-0.949695\pi\)
0.357475 0.933923i \(-0.383638\pi\)
\(270\) 0 0
\(271\) 888484. 1.53890e6i 0.734897 1.27288i −0.219871 0.975529i \(-0.570564\pi\)
0.954768 0.297350i \(-0.0961029\pi\)
\(272\) 0 0
\(273\) 10609.3 + 12616.8i 0.00861546 + 0.0102458i
\(274\) 0 0
\(275\) −224381. + 388640.i −0.178918 + 0.309896i
\(276\) 0 0
\(277\) −440632. 763198.i −0.345046 0.597637i 0.640316 0.768112i \(-0.278803\pi\)
−0.985362 + 0.170474i \(0.945470\pi\)
\(278\) 0 0
\(279\) −193375. −0.148727
\(280\) 0 0
\(281\) −1.13932e6 −0.860756 −0.430378 0.902649i \(-0.641620\pi\)
−0.430378 + 0.902649i \(0.641620\pi\)
\(282\) 0 0
\(283\) 448733. + 777228.i 0.333059 + 0.576876i 0.983110 0.183015i \(-0.0585857\pi\)
−0.650051 + 0.759891i \(0.725252\pi\)
\(284\) 0 0
\(285\) 118213. 204751.i 0.0862090 0.149318i
\(286\) 0 0
\(287\) 532735. 94509.4i 0.381774 0.0677283i
\(288\) 0 0
\(289\) 416778. 721881.i 0.293535 0.508418i
\(290\) 0 0
\(291\) −200872. 347920.i −0.139055 0.240850i
\(292\) 0 0
\(293\) −1.84614e6 −1.25631 −0.628153 0.778090i \(-0.716189\pi\)
−0.628153 + 0.778090i \(0.716189\pi\)
\(294\) 0 0
\(295\) −73674.9 −0.0492907
\(296\) 0 0
\(297\) 58839.7 + 101913.i 0.0387061 + 0.0670409i
\(298\) 0 0
\(299\) −29566.5 + 51210.8i −0.0191259 + 0.0331271i
\(300\) 0 0
\(301\) 693252. 122986.i 0.441037 0.0782418i
\(302\) 0 0
\(303\) 503660. 872365.i 0.315160 0.545873i
\(304\) 0 0
\(305\) −467504. 809741.i −0.287764 0.498421i
\(306\) 0 0
\(307\) 1.38565e6 0.839089 0.419544 0.907735i \(-0.362190\pi\)
0.419544 + 0.907735i \(0.362190\pi\)
\(308\) 0 0
\(309\) 1.50254e6 0.895221
\(310\) 0 0
\(311\) −1.15624e6 2.00267e6i −0.677871 1.17411i −0.975621 0.219463i \(-0.929570\pi\)
0.297750 0.954644i \(-0.403764\pi\)
\(312\) 0 0
\(313\) 584400. 1.01221e6i 0.337171 0.583996i −0.646729 0.762720i \(-0.723863\pi\)
0.983899 + 0.178724i \(0.0571968\pi\)
\(314\) 0 0
\(315\) −125531. 149285.i −0.0712811 0.0847696i
\(316\) 0 0
\(317\) −717166. + 1.24217e6i −0.400840 + 0.694276i −0.993828 0.110936i \(-0.964615\pi\)
0.592987 + 0.805212i \(0.297948\pi\)
\(318\) 0 0
\(319\) −339204. 587519.i −0.186631 0.323255i
\(320\) 0 0
\(321\) 926871. 0.502061
\(322\) 0 0
\(323\) −1.08293e6 −0.577554
\(324\) 0 0
\(325\) 19638.3 + 34014.5i 0.0103132 + 0.0178631i
\(326\) 0 0
\(327\) 620195. 1.07421e6i 0.320744 0.555546i
\(328\) 0 0
\(329\) 278659. 768105.i 0.141933 0.391229i
\(330\) 0 0
\(331\) 1.11709e6 1.93486e6i 0.560426 0.970686i −0.437033 0.899445i \(-0.643971\pi\)
0.997459 0.0712406i \(-0.0226958\pi\)
\(332\) 0 0
\(333\) 27254.0 + 47205.4i 0.0134685 + 0.0233282i
\(334\) 0 0
\(335\) −253452. −0.123391
\(336\) 0 0
\(337\) 3.08787e6 1.48110 0.740549 0.672002i \(-0.234565\pi\)
0.740549 + 0.672002i \(0.234565\pi\)
\(338\) 0 0
\(339\) 584851. + 1.01299e6i 0.276405 + 0.478748i
\(340\) 0 0
\(341\) −192690. + 333749.i −0.0897373 + 0.155429i
\(342\) 0 0
\(343\) −1.88355e6 + 1.09535e6i −0.864454 + 0.502711i
\(344\) 0 0
\(345\) 349838. 605936.i 0.158241 0.274081i
\(346\) 0 0
\(347\) 1.55877e6 + 2.69987e6i 0.694959 + 1.20370i 0.970195 + 0.242327i \(0.0779107\pi\)
−0.275236 + 0.961377i \(0.588756\pi\)
\(348\) 0 0
\(349\) 613026. 0.269411 0.134706 0.990886i \(-0.456991\pi\)
0.134706 + 0.990886i \(0.456991\pi\)
\(350\) 0 0
\(351\) 10299.5 0.00446221
\(352\) 0 0
\(353\) −1.89185e6 3.27678e6i −0.808071 1.39962i −0.914198 0.405268i \(-0.867178\pi\)
0.106127 0.994353i \(-0.466155\pi\)
\(354\) 0 0
\(355\) −779724. + 1.35052e6i −0.328375 + 0.568762i
\(356\) 0 0
\(357\) −304685. + 839844.i −0.126526 + 0.348761i
\(358\) 0 0
\(359\) −1.86107e6 + 3.22346e6i −0.762125 + 1.32004i 0.179629 + 0.983734i \(0.442510\pi\)
−0.941753 + 0.336304i \(0.890823\pi\)
\(360\) 0 0
\(361\) 237940. + 412123.i 0.0960945 + 0.166441i
\(362\) 0 0
\(363\) −1.21493e6 −0.483934
\(364\) 0 0
\(365\) 530824. 0.208554
\(366\) 0 0
\(367\) −2.06898e6 3.58357e6i −0.801845 1.38884i −0.918400 0.395652i \(-0.870519\pi\)
0.116555 0.993184i \(-0.462815\pi\)
\(368\) 0 0
\(369\) 169025. 292759.i 0.0646225 0.111929i
\(370\) 0 0
\(371\) 1.36974e6 + 1.62893e6i 0.516658 + 0.614424i
\(372\) 0 0
\(373\) −1.47209e6 + 2.54973e6i −0.547851 + 0.948905i 0.450571 + 0.892741i \(0.351220\pi\)
−0.998422 + 0.0561644i \(0.982113\pi\)
\(374\) 0 0
\(375\) −493566. 854882.i −0.181245 0.313926i
\(376\) 0 0
\(377\) −59375.7 −0.0215157
\(378\) 0 0
\(379\) 2.97504e6 1.06388 0.531942 0.846781i \(-0.321462\pi\)
0.531942 + 0.846781i \(0.321462\pi\)
\(380\) 0 0
\(381\) 1.09469e6 + 1.89606e6i 0.386349 + 0.669177i
\(382\) 0 0
\(383\) −1.03052e6 + 1.78491e6i −0.358971 + 0.621756i −0.987789 0.155796i \(-0.950206\pi\)
0.628818 + 0.777552i \(0.283539\pi\)
\(384\) 0 0
\(385\) −382739. + 67899.5i −0.131598 + 0.0233461i
\(386\) 0 0
\(387\) 219953. 380970.i 0.0746539 0.129304i
\(388\) 0 0
\(389\) −1.04542e6 1.81072e6i −0.350281 0.606705i 0.636018 0.771675i \(-0.280581\pi\)
−0.986299 + 0.164970i \(0.947247\pi\)
\(390\) 0 0
\(391\) −3.20480e6 −1.06013
\(392\) 0 0
\(393\) 1.74902e6 0.571233
\(394\) 0 0
\(395\) −556817. 964435.i −0.179564 0.311014i
\(396\) 0 0
\(397\) −585647. + 1.01437e6i −0.186492 + 0.323013i −0.944078 0.329722i \(-0.893045\pi\)
0.757586 + 0.652735i \(0.226378\pi\)
\(398\) 0 0
\(399\) −1.62479e6 + 288245.i −0.510935 + 0.0906420i
\(400\) 0 0
\(401\) −1.54574e6 + 2.67731e6i −0.480039 + 0.831452i −0.999738 0.0228979i \(-0.992711\pi\)
0.519699 + 0.854349i \(0.326044\pi\)
\(402\) 0 0
\(403\) 16864.6 + 29210.4i 0.00517266 + 0.00895930i
\(404\) 0 0
\(405\) −121866. −0.0369187
\(406\) 0 0
\(407\) 108630. 0.0325059
\(408\) 0 0
\(409\) 2.17426e6 + 3.76593e6i 0.642693 + 1.11318i 0.984829 + 0.173527i \(0.0555163\pi\)
−0.342136 + 0.939650i \(0.611150\pi\)
\(410\) 0 0
\(411\) 13921.7 24113.0i 0.00406524 0.00704121i
\(412\) 0 0
\(413\) 330947. + 393572.i 0.0954737 + 0.113540i
\(414\) 0 0
\(415\) −571932. + 990616.i −0.163014 + 0.282348i
\(416\) 0 0
\(417\) −101702. 176153.i −0.0286411 0.0496078i
\(418\) 0 0
\(419\) 3.13660e6 0.872818 0.436409 0.899748i \(-0.356250\pi\)
0.436409 + 0.899748i \(0.356250\pi\)
\(420\) 0 0
\(421\) 6.02560e6 1.65690 0.828448 0.560066i \(-0.189224\pi\)
0.828448 + 0.560066i \(0.189224\pi\)
\(422\) 0 0
\(423\) −255258. 442120.i −0.0693632 0.120141i
\(424\) 0 0
\(425\) −1.06432e6 + 1.84346e6i −0.285826 + 0.495065i
\(426\) 0 0
\(427\) −2.22562e6 + 6.13476e6i −0.590719 + 1.62828i
\(428\) 0 0
\(429\) 10263.0 17776.1i 0.00269235 0.00466329i
\(430\) 0 0
\(431\) 1.14931e6 + 1.99067e6i 0.298020 + 0.516186i 0.975683 0.219187i \(-0.0703404\pi\)
−0.677663 + 0.735373i \(0.737007\pi\)
\(432\) 0 0
\(433\) −5.62982e6 −1.44303 −0.721515 0.692399i \(-0.756554\pi\)
−0.721515 + 0.692399i \(0.756554\pi\)
\(434\) 0 0
\(435\) 702545. 0.178013
\(436\) 0 0
\(437\) −2.95971e6 5.12637e6i −0.741388 1.28412i
\(438\) 0 0
\(439\) 2.72482e6 4.71952e6i 0.674801 1.16879i −0.301725 0.953395i \(-0.597563\pi\)
0.976527 0.215396i \(-0.0691041\pi\)
\(440\) 0 0
\(441\) −233597. + 1.34118e6i −0.0571968 + 0.328389i
\(442\) 0 0
\(443\) −2.85467e6 + 4.94443e6i −0.691108 + 1.19703i 0.280367 + 0.959893i \(0.409544\pi\)
−0.971475 + 0.237142i \(0.923789\pi\)
\(444\) 0 0
\(445\) 392832. + 680405.i 0.0940387 + 0.162880i
\(446\) 0 0
\(447\) −3.17515e6 −0.751615
\(448\) 0 0
\(449\) 5.38234e6 1.25996 0.629978 0.776613i \(-0.283064\pi\)
0.629978 + 0.776613i \(0.283064\pi\)
\(450\) 0 0
\(451\) −336851. 583442.i −0.0779823 0.135069i
\(452\) 0 0
\(453\) −652934. + 1.13092e6i −0.149494 + 0.258931i
\(454\) 0 0
\(455\) −11602.5 + 31981.5i −0.00262738 + 0.00724220i
\(456\) 0 0
\(457\) 3.19525e6 5.53434e6i 0.715673 1.23958i −0.247026 0.969009i \(-0.579453\pi\)
0.962699 0.270573i \(-0.0872133\pi\)
\(458\) 0 0
\(459\) 279099. + 483413.i 0.0618338 + 0.107099i
\(460\) 0 0
\(461\) 7.34511e6 1.60970 0.804851 0.593476i \(-0.202245\pi\)
0.804851 + 0.593476i \(0.202245\pi\)
\(462\) 0 0
\(463\) −4.63416e6 −1.00466 −0.502329 0.864677i \(-0.667523\pi\)
−0.502329 + 0.864677i \(0.667523\pi\)
\(464\) 0 0
\(465\) −199546. 345623.i −0.0427966 0.0741259i
\(466\) 0 0
\(467\) 3.81598e6 6.60946e6i 0.809680 1.40241i −0.103406 0.994639i \(-0.532974\pi\)
0.913086 0.407768i \(-0.133693\pi\)
\(468\) 0 0
\(469\) 1.13850e6 + 1.35394e6i 0.239002 + 0.284229i
\(470\) 0 0
\(471\) 980529. 1.69833e6i 0.203661 0.352751i
\(472\) 0 0
\(473\) −438346. 759238.i −0.0900875 0.156036i
\(474\) 0 0
\(475\) −3.93172e6 −0.799556
\(476\) 0 0
\(477\) 1.32975e6 0.267593
\(478\) 0 0
\(479\) −4.80631e6 8.32477e6i −0.957135 1.65781i −0.729406 0.684081i \(-0.760204\pi\)
−0.227728 0.973725i \(-0.573130\pi\)
\(480\) 0 0
\(481\) 4753.74 8233.72i 0.000936856 0.00162268i
\(482\) 0 0
\(483\) −4.80839e6 + 853028.i −0.937846 + 0.166378i
\(484\) 0 0
\(485\) 414562. 718042.i 0.0800267 0.138610i
\(486\) 0 0
\(487\) −1.40112e6 2.42680e6i −0.267702 0.463673i 0.700566 0.713588i \(-0.252931\pi\)
−0.968268 + 0.249914i \(0.919598\pi\)
\(488\) 0 0
\(489\) −2.89900e6 −0.548246
\(490\) 0 0
\(491\) 4.82008e6 0.902299 0.451149 0.892448i \(-0.351014\pi\)
0.451149 + 0.892448i \(0.351014\pi\)
\(492\) 0 0
\(493\) −1.60897e6 2.78682e6i −0.298148 0.516407i
\(494\) 0 0
\(495\) −121434. + 210330.i −0.0222755 + 0.0385823i
\(496\) 0 0
\(497\) 1.07170e7 1.90125e6i 1.94618 0.345261i
\(498\) 0 0
\(499\) −2.29829e6 + 3.98076e6i −0.413194 + 0.715673i −0.995237 0.0974853i \(-0.968920\pi\)
0.582043 + 0.813158i \(0.302253\pi\)
\(500\) 0 0
\(501\) −3.18326e6 5.51358e6i −0.566602 0.981384i
\(502\) 0 0
\(503\) 1.80055e6 0.317311 0.158656 0.987334i \(-0.449284\pi\)
0.158656 + 0.987334i \(0.449284\pi\)
\(504\) 0 0
\(505\) 2.07892e6 0.362752
\(506\) 0 0
\(507\) 1.66992e6 + 2.89239e6i 0.288520 + 0.499731i
\(508\) 0 0
\(509\) 2.41602e6 4.18467e6i 0.413339 0.715924i −0.581913 0.813251i \(-0.697696\pi\)
0.995253 + 0.0973263i \(0.0310291\pi\)
\(510\) 0 0
\(511\) −2.38446e6 2.83566e6i −0.403959 0.480400i
\(512\) 0 0
\(513\) −515509. + 892888.i −0.0864854 + 0.149797i
\(514\) 0 0
\(515\) 1.55048e6 + 2.68552e6i 0.257602 + 0.446180i
\(516\) 0 0
\(517\) −1.01741e6 −0.167406
\(518\) 0 0
\(519\) −1.53457e6 −0.250073
\(520\) 0 0
\(521\) −1.40562e6 2.43461e6i −0.226869 0.392948i 0.730010 0.683437i \(-0.239516\pi\)
−0.956878 + 0.290489i \(0.906182\pi\)
\(522\) 0 0
\(523\) 1.22715e6 2.12548e6i 0.196174 0.339784i −0.751110 0.660177i \(-0.770481\pi\)
0.947285 + 0.320392i \(0.103815\pi\)
\(524\) 0 0
\(525\) −1.10620e6 + 3.04917e6i −0.175161 + 0.482818i
\(526\) 0 0
\(527\) −914000. + 1.58309e6i −0.143357 + 0.248302i
\(528\) 0 0
\(529\) −5.54076e6 9.59687e6i −0.860855 1.49104i
\(530\) 0 0
\(531\) 321286. 0.0494487
\(532\) 0 0
\(533\) −58963.7 −0.00899015
\(534\) 0 0
\(535\) 956445. + 1.65661e6i 0.144469 + 0.250228i
\(536\) 0 0
\(537\) 1.86933e6 3.23777e6i 0.279737 0.484519i
\(538\) 0 0
\(539\) 2.08198e6 + 1.73959e6i 0.308677 + 0.257914i
\(540\) 0 0
\(541\) 579232. 1.00326e6i 0.0850862 0.147374i −0.820342 0.571874i \(-0.806217\pi\)
0.905428 + 0.424500i \(0.139550\pi\)
\(542\) 0 0
\(543\) 5230.72 + 9059.87i 0.000761310 + 0.00131863i
\(544\) 0 0
\(545\) 2.55994e6 0.369180
\(546\) 0 0
\(547\) 4.63638e6 0.662538 0.331269 0.943536i \(-0.392523\pi\)
0.331269 + 0.943536i \(0.392523\pi\)
\(548\) 0 0
\(549\) 2.03872e6 + 3.53116e6i 0.288686 + 0.500019i
\(550\) 0 0
\(551\) 2.97185e6 5.14740e6i 0.417012 0.722285i
\(552\) 0 0
\(553\) −2.65080e6 + 7.30676e6i −0.368608 + 1.01604i
\(554\) 0 0
\(555\) −56247.3 + 97423.1i −0.00775120 + 0.0134255i
\(556\) 0 0
\(557\) −135916. 235414.i −0.0185624 0.0321510i 0.856595 0.515989i \(-0.172576\pi\)
−0.875157 + 0.483838i \(0.839242\pi\)
\(558\) 0 0
\(559\) −76730.0 −0.0103857
\(560\) 0 0
\(561\) 1.11244e6 0.149234
\(562\) 0 0
\(563\) −1.69122e6 2.92928e6i −0.224869 0.389485i 0.731411 0.681937i \(-0.238862\pi\)
−0.956280 + 0.292452i \(0.905529\pi\)
\(564\) 0 0
\(565\) −1.20702e6 + 2.09063e6i −0.159072 + 0.275522i
\(566\) 0 0
\(567\) 547423. + 651011.i 0.0715097 + 0.0850414i
\(568\) 0 0
\(569\) −6.56130e6 + 1.13645e7i −0.849590 + 1.47153i 0.0319843 + 0.999488i \(0.489817\pi\)
−0.881574 + 0.472045i \(0.843516\pi\)
\(570\) 0 0
\(571\) 7.35811e6 + 1.27446e7i 0.944443 + 1.63582i 0.756862 + 0.653575i \(0.226731\pi\)
0.187581 + 0.982249i \(0.439935\pi\)
\(572\) 0 0
\(573\) −6.71053e6 −0.853828
\(574\) 0 0
\(575\) −1.16355e7 −1.46762
\(576\) 0 0
\(577\) 1.94148e6 + 3.36273e6i 0.242769 + 0.420487i 0.961502 0.274798i \(-0.0886111\pi\)
−0.718733 + 0.695286i \(0.755278\pi\)
\(578\) 0 0
\(579\) 892678. 1.54616e6i 0.110662 0.191672i
\(580\) 0 0
\(581\) 7.86099e6 1.39457e6i 0.966134 0.171396i
\(582\) 0 0
\(583\) 1.32504e6 2.29503e6i 0.161457 0.279651i
\(584\) 0 0
\(585\) 10628.2 + 18408.5i 0.00128401 + 0.00222397i
\(586\) 0 0
\(587\) 4.97913e6 0.596428 0.298214 0.954499i \(-0.403609\pi\)
0.298214 + 0.954499i \(0.403609\pi\)
\(588\) 0 0
\(589\) −3.37641e6 −0.401021
\(590\) 0 0
\(591\) 2.11216e6 + 3.65836e6i 0.248747 + 0.430842i
\(592\) 0 0
\(593\) −7.66344e6 + 1.32735e7i −0.894926 + 1.55006i −0.0610292 + 0.998136i \(0.519438\pi\)
−0.833896 + 0.551921i \(0.813895\pi\)
\(594\) 0 0
\(595\) −1.81547e6 + 322073.i −0.210231 + 0.0372959i
\(596\) 0 0
\(597\) 871171. 1.50891e6i 0.100039 0.173272i
\(598\) 0 0
\(599\) 3.31480e6 + 5.74141e6i 0.377477 + 0.653810i 0.990694 0.136104i \(-0.0434583\pi\)
−0.613217 + 0.789914i \(0.710125\pi\)
\(600\) 0 0
\(601\) −1.45010e6 −0.163762 −0.0818808 0.996642i \(-0.526093\pi\)
−0.0818808 + 0.996642i \(0.526093\pi\)
\(602\) 0 0
\(603\) 1.10527e6 0.123787
\(604\) 0 0
\(605\) −1.25370e6 2.17147e6i −0.139253 0.241194i
\(606\) 0 0
\(607\) −1.95555e6 + 3.38711e6i −0.215425 + 0.373128i −0.953404 0.301696i \(-0.902447\pi\)
0.737979 + 0.674824i \(0.235780\pi\)
\(608\) 0 0
\(609\) −3.15583e6 3.75300e6i −0.344802 0.410049i
\(610\) 0 0
\(611\) −44523.1 + 77116.2i −0.00482483 + 0.00835685i
\(612\) 0 0
\(613\) −5.88765e6 1.01977e7i −0.632835 1.09610i −0.986969 0.160908i \(-0.948558\pi\)
0.354134 0.935195i \(-0.384776\pi\)
\(614\) 0 0
\(615\) 697671. 0.0743812
\(616\) 0 0
\(617\) −4.61462e6 −0.488004 −0.244002 0.969775i \(-0.578460\pi\)
−0.244002 + 0.969775i \(0.578460\pi\)
\(618\) 0 0
\(619\) 2.83733e6 + 4.91440e6i 0.297634 + 0.515518i 0.975594 0.219581i \(-0.0704690\pi\)
−0.677960 + 0.735099i \(0.737136\pi\)
\(620\) 0 0
\(621\) −1.52559e6 + 2.64240e6i −0.158748 + 0.274960i
\(622\) 0 0
\(623\) 1.87013e6 5.15489e6i 0.193042 0.532107i
\(624\) 0 0
\(625\) −3.32511e6 + 5.75926e6i −0.340491 + 0.589748i
\(626\) 0 0
\(627\) 1.02736e6 + 1.77945e6i 0.104365 + 0.180766i
\(628\) 0 0
\(629\) 515271. 0.0519289
\(630\) 0 0
\(631\) 5.67894e6 0.567798 0.283899 0.958854i \(-0.408372\pi\)
0.283899 + 0.958854i \(0.408372\pi\)
\(632\) 0 0
\(633\) 1.34130e6 + 2.32320e6i 0.133050 + 0.230450i
\(634\) 0 0
\(635\) −2.25925e6 + 3.91313e6i −0.222346 + 0.385114i
\(636\) 0 0
\(637\) 222964. 81680.2i 0.0217714 0.00797569i
\(638\) 0 0
\(639\) 3.40027e6 5.88943e6i 0.329428 0.570586i
\(640\) 0 0
\(641\) 1.05369e6 + 1.82504e6i 0.101290 + 0.175439i 0.912216 0.409709i \(-0.134370\pi\)
−0.810926 + 0.585148i \(0.801036\pi\)
\(642\) 0 0
\(643\) −2.30987e6 −0.220323 −0.110162 0.993914i \(-0.535137\pi\)
−0.110162 + 0.993914i \(0.535137\pi\)
\(644\) 0 0
\(645\) 907885. 0.0859274
\(646\) 0 0
\(647\) −4.93033e6 8.53958e6i −0.463036 0.802003i 0.536074 0.844171i \(-0.319907\pi\)
−0.999111 + 0.0421683i \(0.986573\pi\)
\(648\) 0 0
\(649\) 320147. 554510.i 0.0298358 0.0516771i
\(650\) 0 0
\(651\) −949964. + 2.61851e6i −0.0878526 + 0.242160i
\(652\) 0 0
\(653\) −5.01545e6 + 8.68701e6i −0.460285 + 0.797237i −0.998975 0.0452673i \(-0.985586\pi\)
0.538690 + 0.842504i \(0.318919\pi\)
\(654\) 0 0
\(655\) 1.80483e6 + 3.12605e6i 0.164374 + 0.284704i
\(656\) 0 0
\(657\) −2.31484e6 −0.209223
\(658\) 0 0
\(659\) −1.42828e7 −1.28115 −0.640575 0.767895i \(-0.721304\pi\)
−0.640575 + 0.767895i \(0.721304\pi\)
\(660\) 0 0
\(661\) 9.82097e6 + 1.70104e7i 0.874280 + 1.51430i 0.857527 + 0.514438i \(0.172000\pi\)
0.0167532 + 0.999860i \(0.494667\pi\)
\(662\) 0 0
\(663\) 48681.4 84318.6i 0.00430109 0.00744971i
\(664\) 0 0
\(665\) −2.19182e6 2.60657e6i −0.192199 0.228568i
\(666\) 0 0
\(667\) 8.79486e6 1.52331e7i 0.765445 1.32579i
\(668\) 0 0
\(669\) 842466. + 1.45919e6i 0.0727758 + 0.126051i
\(670\) 0 0
\(671\) 8.12596e6 0.696736
\(672\) 0 0
\(673\) −9.00150e6 −0.766086 −0.383043 0.923731i \(-0.625124\pi\)
−0.383043 + 0.923731i \(0.625124\pi\)
\(674\) 0 0
\(675\) 1.01331e6 + 1.75510e6i 0.0856016 + 0.148266i
\(676\) 0 0
\(677\) −6.71181e6 + 1.16252e7i −0.562818 + 0.974830i 0.434431 + 0.900705i \(0.356950\pi\)
−0.997249 + 0.0741247i \(0.976384\pi\)
\(678\) 0 0
\(679\) −5.69800e6 + 1.01085e6i −0.474294 + 0.0841418i
\(680\) 0 0
\(681\) 6.02534e6 1.04362e7i 0.497868 0.862332i
\(682\) 0 0
\(683\) 4.00840e6 + 6.94276e6i 0.328791 + 0.569483i 0.982272 0.187460i \(-0.0600255\pi\)
−0.653481 + 0.756943i \(0.726692\pi\)
\(684\) 0 0
\(685\) 57463.5 0.00467913
\(686\) 0 0
\(687\) 8.56491e6 0.692358
\(688\) 0 0
\(689\) −115970. 200866.i −0.00930673 0.0161197i
\(690\) 0 0
\(691\) 1.20987e7 2.09555e7i 0.963923 1.66956i 0.251442 0.967872i \(-0.419095\pi\)
0.712481 0.701691i \(-0.247572\pi\)
\(692\) 0 0
\(693\) 1.66907e6 296100.i 0.132020 0.0234210i
\(694\) 0 0
\(695\) 209894. 363547.i 0.0164831 0.0285495i
\(696\) 0 0
\(697\) −1.59781e6 2.76749e6i −0.124578 0.215776i
\(698\) 0 0
\(699\) 6.69077e6 0.517944
\(700\) 0 0
\(701\) −1.56268e6 −0.120109 −0.0600543 0.998195i \(-0.519127\pi\)
−0.0600543 + 0.998195i \(0.519127\pi\)
\(702\) 0 0
\(703\) 475866. + 824224.i 0.0363158 + 0.0629009i
\(704\) 0 0
\(705\) 526806. 912455.i 0.0399189 0.0691415i
\(706\) 0 0
\(707\) −9.33851e6 1.11056e7i −0.702634 0.835592i
\(708\) 0 0
\(709\) 9.76950e6 1.69213e7i 0.729889 1.26420i −0.227041 0.973885i \(-0.572905\pi\)
0.956930 0.290320i \(-0.0937616\pi\)
\(710\) 0 0
\(711\) 2.42820e6 + 4.20576e6i 0.180140 + 0.312011i
\(712\) 0 0
\(713\) −9.99210e6 −0.736093
\(714\) 0 0
\(715\) 42362.0 0.00309892
\(716\) 0 0
\(717\) 2.81631e6 + 4.87799e6i 0.204589 + 0.354359i
\(718\) 0 0
\(719\) 4.05095e6 7.01645e6i 0.292237 0.506169i −0.682102 0.731257i \(-0.738934\pi\)
0.974338 + 0.225089i \(0.0722672\pi\)
\(720\) 0 0
\(721\) 7.38129e6 2.03460e7i 0.528804 1.45761i
\(722\) 0 0
\(723\) 5.99770e6 1.03883e7i 0.426716 0.739094i
\(724\) 0 0
\(725\) −5.84161e6 1.01180e7i −0.412750 0.714904i
\(726\) 0 0
\(727\) 2.52759e7 1.77366 0.886829 0.462098i \(-0.152903\pi\)
0.886829 + 0.462098i \(0.152903\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −2.07924e6 3.60135e6i −0.143917 0.249271i
\(732\) 0 0
\(733\) −1.37207e7 + 2.37650e7i −0.943228 + 1.63372i −0.183969 + 0.982932i \(0.558894\pi\)
−0.759260 + 0.650787i \(0.774439\pi\)
\(734\) 0 0
\(735\) −2.63816e6 + 966457.i −0.180128 + 0.0659879i
\(736\) 0 0
\(737\) 1.10135e6 1.90759e6i 0.0746888 0.129365i
\(738\) 0 0
\(739\) 3.26785e6 + 5.66008e6i 0.220115 + 0.381251i 0.954843 0.297111i \(-0.0960233\pi\)
−0.734727 + 0.678362i \(0.762690\pi\)
\(740\) 0 0
\(741\) 179834. 0.0120317
\(742\) 0 0
\(743\) −2.46784e7 −1.64000 −0.820001 0.572362i \(-0.806027\pi\)
−0.820001 + 0.572362i \(0.806027\pi\)
\(744\) 0 0
\(745\) −3.27646e6 5.67499e6i −0.216279 0.374606i
\(746\) 0 0
\(747\) 2.49411e6 4.31993e6i 0.163537 0.283254i
\(748\) 0 0
\(749\) 4.55329e6 1.25508e7i 0.296565 0.817463i
\(750\) 0 0
\(751\) 1.63911e6 2.83902e6i 0.106049 0.183683i −0.808117 0.589022i \(-0.799513\pi\)
0.914166 + 0.405339i \(0.132847\pi\)
\(752\) 0 0
\(753\) −8.04641e6 1.39368e7i −0.517148 0.895726i
\(754\) 0 0
\(755\) −2.69507e6 −0.172069
\(756\) 0 0
\(757\) 3.68090e6 0.233461 0.116731 0.993164i \(-0.462759\pi\)
0.116731 + 0.993164i \(0.462759\pi\)
\(758\) 0 0
\(759\) 3.04036e6 + 5.26606e6i 0.191567 + 0.331804i
\(760\) 0 0
\(761\) −1.05099e7 + 1.82037e7i −0.657866 + 1.13946i 0.323301 + 0.946296i \(0.395208\pi\)
−0.981167 + 0.193162i \(0.938126\pi\)
\(762\) 0 0
\(763\) −1.14992e7 1.36752e7i −0.715084 0.850399i
\(764\) 0 0
\(765\) −576008. + 997675.i −0.0355857 + 0.0616362i
\(766\) 0 0
\(767\) −28019.9 48531.9i −0.00171980 0.00297878i
\(768\) 0 0
\(769\) −4.15418e6 −0.253320 −0.126660 0.991946i \(-0.540426\pi\)
−0.126660 + 0.991946i \(0.540426\pi\)
\(770\) 0 0
\(771\) 4.58032e6 0.277498
\(772\) 0 0
\(773\) −731741. 1.26741e6i −0.0440462 0.0762903i 0.843162 0.537660i \(-0.180692\pi\)
−0.887208 + 0.461370i \(0.847358\pi\)
\(774\) 0 0
\(775\) −3.31841e6 + 5.74765e6i −0.198461 + 0.343745i
\(776\) 0 0
\(777\) 773098. 137151.i 0.0459390 0.00814978i
\(778\) 0 0
\(779\) 2.95123e6 5.11169e6i 0.174245 0.301801i
\(780\) 0 0
\(781\) −6.77642e6 1.17371e7i −0.397533 0.688547i
\(782\) 0 0
\(783\) −3.06370e6 −0.178584
\(784\) 0 0
\(785\) 4.04726e6 0.234416
\(786\) 0 0
\(787\) 1.00855e7 + 1.74687e7i 0.580446 + 1.00536i 0.995426 + 0.0955317i \(0.0304551\pi\)
−0.414980 + 0.909830i \(0.636212\pi\)
\(788\) 0 0
\(789\) 1.51422e6 2.62271e6i 0.0865957 0.149988i
\(790\) 0 0
\(791\) 1.65901e7 2.94316e6i 0.942775 0.167252i
\(792\) 0 0
\(793\) 355600. 615918.i 0.0200807 0.0347808i
\(794\) 0 0
\(795\) 1.37218e6 + 2.37669e6i 0.0770004 + 0.133369i
\(796\) 0 0
\(797\) 2.19496e7 1.22400 0.612000 0.790858i \(-0.290365\pi\)
0.612000 + 0.790858i \(0.290365\pi\)
\(798\) 0 0
\(799\) −4.82598e6 −0.267435
\(800\) 0 0
\(801\) −1.71308e6 2.96715e6i −0.0943403 0.163402i
\(802\) 0 0
\(803\) −2.30664e6 + 3.99521e6i −0.126238 + 0.218651i
\(804\) 0 0
\(805\) −6.48644e6 7.71386e6i −0.352790 0.419548i
\(806\) 0 0
\(807\) −6.72988e6 + 1.16565e7i −0.363767 + 0.630064i
\(808\) 0 0
\(809\) 1.18138e7 + 2.04621e7i 0.634628 + 1.09921i 0.986594 + 0.163195i \(0.0521799\pi\)
−0.351966 + 0.936013i \(0.614487\pi\)
\(810\) 0 0
\(811\) −2.85032e6 −0.152174 −0.0760872 0.997101i \(-0.524243\pi\)
−0.0760872 + 0.997101i \(0.524243\pi\)
\(812\) 0 0
\(813\) −1.59927e7 −0.848586
\(814\) 0 0
\(815\) −2.99150e6 5.18143e6i −0.157759 0.273247i
\(816\) 0 0
\(817\) 3.84046e6 6.65188e6i 0.201293 0.348650i
\(818\) 0 0
\(819\) 50596.8 139467.i 0.00263581 0.00726543i
\(820\) 0 0
\(821\) 7.06565e6 1.22381e7i 0.365843 0.633658i −0.623068 0.782167i \(-0.714114\pi\)
0.988911 + 0.148509i \(0.0474475\pi\)
\(822\) 0 0
\(823\) 1.61594e7 + 2.79889e7i 0.831620 + 1.44041i 0.896753 + 0.442532i \(0.145920\pi\)
−0.0651323 + 0.997877i \(0.520747\pi\)
\(824\) 0 0
\(825\) 4.03886e6 0.206597
\(826\) 0 0
\(827\) −3.35291e7 −1.70474 −0.852369 0.522941i \(-0.824835\pi\)
−0.852369 + 0.522941i \(0.824835\pi\)
\(828\) 0 0
\(829\) 9.97583e6 + 1.72786e7i 0.504154 + 0.873219i 0.999988 + 0.00480272i \(0.00152876\pi\)
−0.495835 + 0.868417i \(0.665138\pi\)
\(830\) 0 0
\(831\) −3.96569e6 + 6.86878e6i −0.199212 + 0.345046i
\(832\) 0 0
\(833\) 9.87561e6 + 8.25153e6i 0.493119 + 0.412023i
\(834\) 0 0
\(835\) 6.56967e6 1.13790e7i 0.326082 0.564791i
\(836\) 0 0
\(837\) 870189. + 1.50721e6i 0.0429339 + 0.0743636i
\(838\) 0 0
\(839\) −2.34067e6 −0.114798 −0.0573990 0.998351i \(-0.518281\pi\)
−0.0573990 + 0.998351i \(0.518281\pi\)
\(840\) 0 0
\(841\) −2.84928e6 −0.138914
\(842\) 0 0
\(843\) 5.12694e6 + 8.88012e6i 0.248479 + 0.430378i
\(844\) 0 0
\(845\) −3.44641e6 + 5.96935e6i −0.166045 + 0.287598i
\(846\) 0 0
\(847\) −5.96841e6 + 1.64515e7i −0.285858 + 0.787948i
\(848\) 0 0
\(849\) 4.03860e6 6.99505e6i 0.192292 0.333059i
\(850\) 0 0
\(851\) 1.40827e6 + 2.43920e6i 0.0666595 + 0.115458i
\(852\) 0 0
\(853\) −1.79465e7 −0.844514 −0.422257 0.906476i \(-0.638762\pi\)
−0.422257 + 0.906476i \(0.638762\pi\)
\(854\) 0 0
\(855\) −2.12783e6 −0.0995456
\(856\) 0 0
\(857\) 1.84221e7 + 3.19080e7i 0.856815 + 1.48405i 0.874951 + 0.484211i \(0.160893\pi\)
−0.0181366 + 0.999836i \(0.505773\pi\)
\(858\) 0 0
\(859\) −1.20306e7 + 2.08376e7i −0.556293 + 0.963528i 0.441508 + 0.897257i \(0.354444\pi\)
−0.997802 + 0.0662710i \(0.978890\pi\)
\(860\) 0 0
\(861\) −3.13394e6 3.72696e6i −0.144073 0.171336i
\(862\) 0 0
\(863\) −8.23851e6 + 1.42695e7i −0.376549 + 0.652202i −0.990558 0.137097i \(-0.956223\pi\)
0.614008 + 0.789299i \(0.289556\pi\)
\(864\) 0 0
\(865\) −1.58353e6 2.74276e6i −0.0719592 0.124637i
\(866\) 0 0
\(867\) −7.50201e6 −0.338945
\(868\) 0 0
\(869\) 9.67835e6 0.434762
\(870\) 0 0
\(871\) −96392.2 166956.i −0.00430523 0.00745688i
\(872\) 0 0
\(873\) −1.80784e6 + 3.13128e6i −0.0802833 + 0.139055i
\(874\) 0 0
\(875\) −1.40007e7 + 2.48378e6i −0.618200 + 0.109671i
\(876\) 0 0
\(877\) −1.52492e7 + 2.64123e7i −0.669494 + 1.15960i 0.308551 + 0.951208i \(0.400156\pi\)
−0.978046 + 0.208391i \(0.933178\pi\)
\(878\) 0 0
\(879\) 8.30763e6 + 1.43892e7i 0.362664 + 0.628153i
\(880\) 0 0
\(881\) 2.35008e7 1.02010 0.510051 0.860144i \(-0.329627\pi\)
0.510051 + 0.860144i \(0.329627\pi\)
\(882\) 0 0
\(883\) −4.42812e7 −1.91125 −0.955625 0.294587i \(-0.904818\pi\)
−0.955625 + 0.294587i \(0.904818\pi\)
\(884\) 0 0
\(885\) 331537. + 574239.i 0.0142290 + 0.0246453i
\(886\) 0 0
\(887\) 7.63308e6 1.32209e7i 0.325755 0.564224i −0.655910 0.754839i \(-0.727715\pi\)
0.981665 + 0.190615i \(0.0610482\pi\)
\(888\) 0 0
\(889\) 3.10525e7 5.50884e6i 1.31778 0.233779i
\(890\) 0 0
\(891\) 529557. 917219.i 0.0223470 0.0387061i
\(892\) 0 0
\(893\) −4.45691e6 7.71959e6i −0.187027 0.323941i
\(894\) 0 0
\(895\) 7.71590e6 0.321980
\(896\) 0 0
\(897\) 532198. 0.0220847
\(898\) 0 0
\(899\) −5.01654e6 8.68891e6i −0.207017 0.358563i
\(900\) 0 0
\(901\) 6.28514e6 1.08862e7i 0.257931 0.446749i
\(902\) 0 0
\(903\) −4.07821e6 4.84993e6i −0.166437 0.197932i
\(904\) 0 0
\(905\) −10795.2 + 18697.9i −0.000438138 + 0.000758877i
\(906\) 0 0
\(907\) −1.33847e7 2.31830e7i −0.540245 0.935732i −0.998890 0.0471122i \(-0.984998\pi\)
0.458644 0.888620i \(-0.348335\pi\)
\(908\) 0 0
\(909\) −9.06588e6 −0.363915
\(910\) 0 0
\(911\) 1.60537e7 0.640883 0.320442 0.947268i \(-0.396169\pi\)
0.320442 + 0.947268i \(0.396169\pi\)
\(912\) 0 0
\(913\) −4.97054e6 8.60923e6i −0.197345 0.341812i
\(914\) 0 0
\(915\) −4.20754e6 + 7.28767e6i −0.166140 + 0.287764i
\(916\) 0 0
\(917\) 8.59213e6 2.36836e7i 0.337425 0.930090i
\(918\) 0 0
\(919\) −5.40358e6 + 9.35927e6i −0.211053 + 0.365555i −0.952044 0.305960i \(-0.901023\pi\)
0.740991 + 0.671515i \(0.234356\pi\)
\(920\) 0 0
\(921\) −6.23543e6 1.08001e7i −0.242224 0.419544i
\(922\) 0 0
\(923\) −1.18617e6 −0.0458293
\(924\) 0 0
\(925\) 1.87077e6 0.0718894
\(926\) 0 0
\(927\) −6.76144e6 1.17112e7i −0.258428 0.447611i
\(928\) 0 0
\(929\) 1.08468e6 1.87873e6i 0.0412348 0.0714207i −0.844671 0.535285i \(-0.820204\pi\)
0.885906 + 0.463864i \(0.153538\pi\)
\(930\) 0 0
\(931\) −4.07870e6 + 2.34174e7i −0.154222 + 0.885453i
\(932\) 0 0
\(933\) −1.04062e7 + 1.80240e7i −0.391369 + 0.677871i
\(934\) 0 0
\(935\) 1.14793e6 + 1.98828e6i 0.0429425 + 0.0743785i
\(936\) 0 0
\(937\) −3.51305e6 −0.130718 −0.0653589 0.997862i \(-0.520819\pi\)
−0.0653589 + 0.997862i \(0.520819\pi\)
\(938\) 0 0
\(939\) −1.05192e7 −0.389331
\(940\) 0 0
\(941\) 6.46485e6 + 1.11974e7i 0.238004 + 0.412235i 0.960141 0.279515i \(-0.0901735\pi\)
−0.722137 + 0.691750i \(0.756840\pi\)
\(942\) 0 0
\(943\) 8.73384e6 1.51275e7i 0.319835 0.553971i
\(944\) 0 0
\(945\) −598672. + 1.65020e6i −0.0218077 + 0.0601114i
\(946\) 0 0
\(947\) 1.24331e7 2.15347e7i 0.450510 0.780305i −0.547908 0.836538i \(-0.684576\pi\)
0.998418 + 0.0562331i \(0.0179090\pi\)
\(948\) 0 0
\(949\) 201882. + 349669.i 0.00727665 + 0.0126035i
\(950\) 0 0
\(951\) 1.29090e7 0.462850
\(952\) 0 0
\(953\) 3.33465e7 1.18937 0.594686 0.803958i \(-0.297276\pi\)
0.594686 + 0.803958i \(0.297276\pi\)
\(954\) 0 0
\(955\) −6.92465e6 1.19938e7i −0.245691 0.425549i
\(956\) 0 0
\(957\) −3.05284e6 + 5.28767e6i −0.107752 + 0.186631i
\(958\) 0 0
\(959\) −258126. 306970.i −0.00906326 0.0107783i
\(960\) 0 0
\(961\) 1.14649e7 1.98577e7i 0.400461 0.693619i
\(962\) 0 0
\(963\) −4.17092e6 7.22424e6i −0.144933 0.251031i
\(964\) 0 0
\(965\) 3.68465e6 0.127373
\(966\) 0 0
\(967\) −2.48706e7 −0.855305 −0.427652 0.903943i \(-0.640659\pi\)
−0.427652 + 0.903943i \(0.640659\pi\)
\(968\) 0 0
\(969\) 4.87317e6 + 8.44058e6i 0.166726 + 0.288777i
\(970\) 0 0
\(971\) 2.39746e7 4.15252e7i 0.816024 1.41339i −0.0925668 0.995706i \(-0.529507\pi\)
0.908591 0.417688i \(-0.137159\pi\)
\(972\) 0 0
\(973\) −2.88491e6 + 511796.i −0.0976902 + 0.0173306i
\(974\) 0 0
\(975\) 176745. 306131.i 0.00595436 0.0103132i
\(976\) 0 0
\(977\) 3.92595e6 + 6.79995e6i 0.131586 + 0.227913i 0.924288 0.381696i \(-0.124660\pi\)
−0.792702 + 0.609609i \(0.791326\pi\)
\(978\) 0 0
\(979\) −6.82804e6 −0.227687
\(980\) 0 0
\(981\) −1.11635e7 −0.370364
\(982\) 0 0
\(983\) 1.42434e7 + 2.46703e7i 0.470142 + 0.814310i 0.999417 0.0341402i \(-0.0108693\pi\)
−0.529275 + 0.848450i \(0.677536\pi\)
\(984\) 0 0
\(985\) −4.35910e6 + 7.55018e6i −0.143155 + 0.247952i
\(986\) 0 0
\(987\) −7.24075e6 + 1.28454e6i −0.236587 + 0.0419715i
\(988\) 0 0
\(989\) 1.13654e7 1.96855e7i 0.369483 0.639964i
\(990\) 0 0
\(991\) 5.18977e6 + 8.98895e6i 0.167867 + 0.290753i 0.937670 0.347528i \(-0.112979\pi\)
−0.769803 + 0.638282i \(0.779646\pi\)
\(992\) 0 0
\(993\) −2.01076e7 −0.647124
\(994\) 0 0
\(995\) 3.59587e6 0.115145
\(996\) 0 0
\(997\) −8.40804e6 1.45632e7i −0.267890 0.464000i 0.700427 0.713725i \(-0.252993\pi\)
−0.968317 + 0.249725i \(0.919660\pi\)
\(998\) 0 0
\(999\) 245286. 424848.i 0.00777606 0.0134685i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.6.i.b.37.2 yes 4
3.2 odd 2 252.6.k.e.37.1 4
4.3 odd 2 336.6.q.g.289.2 4
7.2 even 3 588.6.a.l.1.1 2
7.3 odd 6 588.6.i.m.361.1 4
7.4 even 3 inner 84.6.i.b.25.2 4
7.5 odd 6 588.6.a.h.1.2 2
7.6 odd 2 588.6.i.m.373.1 4
21.11 odd 6 252.6.k.e.109.1 4
28.11 odd 6 336.6.q.g.193.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.i.b.25.2 4 7.4 even 3 inner
84.6.i.b.37.2 yes 4 1.1 even 1 trivial
252.6.k.e.37.1 4 3.2 odd 2
252.6.k.e.109.1 4 21.11 odd 6
336.6.q.g.193.2 4 28.11 odd 6
336.6.q.g.289.2 4 4.3 odd 2
588.6.a.h.1.2 2 7.5 odd 6
588.6.a.l.1.1 2 7.2 even 3
588.6.i.m.361.1 4 7.3 odd 6
588.6.i.m.373.1 4 7.6 odd 2