Properties

Label 840.2.bg
Level 840840
Weight 22
Character orbit 840.bg
Rep. character χ840(121,)\chi_{840}(121,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 3232
Newform subspaces 1010
Sturm bound 384384
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 840.bg (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 10 10
Sturm bound: 384384
Trace bound: 77
Distinguishing TpT_p: 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(840,[χ])M_{2}(840, [\chi]).

Total New Old
Modular forms 416 32 384
Cusp forms 352 32 320
Eisenstein series 64 0 64

Trace form

32q4q34q716q94q1124q138q17+8q2116q25+8q27+16q29+4q31+8q33+4q354q37+4q3924q4124q43+12q49++8q99+O(q100) 32 q - 4 q^{3} - 4 q^{7} - 16 q^{9} - 4 q^{11} - 24 q^{13} - 8 q^{17} + 8 q^{21} - 16 q^{25} + 8 q^{27} + 16 q^{29} + 4 q^{31} + 8 q^{33} + 4 q^{35} - 4 q^{37} + 4 q^{39} - 24 q^{41} - 24 q^{43} + 12 q^{49}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(840,[χ])S_{2}^{\mathrm{new}}(840, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
840.2.bg.a 840.bg 7.c 22 6.7076.707 Q(3)\Q(\sqrt{-3}) None 840.2.bg.a 00 11 1-1 5-5 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3ζ6q5+(2ζ6)q7+q+(1-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(-2-\zeta_{6})q^{7}+\cdots
840.2.bg.b 840.bg 7.c 22 6.7076.707 Q(3)\Q(\sqrt{-3}) None 840.2.bg.b 00 11 1-1 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3ζ6q5+(2+3ζ6)q7+q+(1-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(-2+3\zeta_{6})q^{7}+\cdots
840.2.bg.c 840.bg 7.c 22 6.7076.707 Q(3)\Q(\sqrt{-3}) None 840.2.bg.c 00 11 1-1 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3ζ6q5+(32ζ6)q7+q+(1-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(3-2\zeta_{6})q^{7}+\cdots
840.2.bg.d 840.bg 7.c 22 6.7076.707 Q(3)\Q(\sqrt{-3}) None 840.2.bg.d 00 11 11 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3+ζ6q5+(3+2ζ6)q7+q+(1-\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-3+2\zeta_{6})q^{7}+\cdots
840.2.bg.e 840.bg 7.c 22 6.7076.707 Q(3)\Q(\sqrt{-3}) None 840.2.bg.e 00 11 11 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3+ζ6q5+(23ζ6)q7+q+(1-\zeta_{6})q^{3}+\zeta_{6}q^{5}+(2-3\zeta_{6})q^{7}+\cdots
840.2.bg.f 840.bg 7.c 22 6.7076.707 Q(3)\Q(\sqrt{-3}) None 840.2.bg.f 00 11 11 55 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3+ζ6q5+(2+ζ6)q7+q+(1-\zeta_{6})q^{3}+\zeta_{6}q^{5}+(2+\zeta_{6})q^{7}+\cdots
840.2.bg.g 840.bg 7.c 44 6.7076.707 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 840.2.bg.g 00 2-2 2-2 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β2)q3+β2q5+(β1+β2+)q7+q+(-1-\beta _{2})q^{3}+\beta _{2}q^{5}+(-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots
840.2.bg.h 840.bg 7.c 44 6.7076.707 Q(3,7)\Q(\sqrt{-3}, \sqrt{7}) None 840.2.bg.h 00 2-2 22 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β2)q3β2q5+(β1+β3)q7+q+(-1-\beta _{2})q^{3}-\beta _{2}q^{5}+(\beta _{1}+\beta _{3})q^{7}+\cdots
840.2.bg.i 840.bg 7.c 66 6.7076.707 6.0.38363328.2 None 840.2.bg.i 00 3-3 3-3 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β3)q3+β3q5+(β1+β4+)q7+q+(-1-\beta _{3})q^{3}+\beta _{3}q^{5}+(-\beta _{1}+\beta _{4}+\cdots)q^{7}+\cdots
840.2.bg.j 840.bg 7.c 66 6.7076.707 6.0.29428272.1 None 840.2.bg.j 00 3-3 33 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β3q3+(1+β3)q5+(β1+β5)q7+q+\beta _{3}q^{3}+(1+\beta _{3})q^{5}+(\beta _{1}+\beta _{5})q^{7}+\cdots

Decomposition of S2old(840,[χ])S_{2}^{\mathrm{old}}(840, [\chi]) into lower level spaces