Properties

Label 840.4.w
Level 840840
Weight 44
Character orbit 840.w
Rep. character χ840(139,)\chi_{840}(139,\cdot)
Character field Q\Q
Dimension 288288
Sturm bound 768768

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 840.w (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 280 280
Character field: Q\Q
Sturm bound: 768768

Dimensions

The following table gives the dimensions of various subspaces of M4(840,[χ])M_{4}(840, [\chi]).

Total New Old
Modular forms 584 288 296
Cusp forms 568 288 280
Eisenstein series 16 0 16

Trace form

288q+2592q9236q14112q16336q30456q352264q4448q46+3192q50+2020q56+1032q60+1008q64+1840q70+3184q74+23328q81+2220q84+1696q91+O(q100) 288 q + 2592 q^{9} - 236 q^{14} - 112 q^{16} - 336 q^{30} - 456 q^{35} - 2264 q^{44} - 48 q^{46} + 3192 q^{50} + 2020 q^{56} + 1032 q^{60} + 1008 q^{64} + 1840 q^{70} + 3184 q^{74} + 23328 q^{81} + 2220 q^{84}+ \cdots - 1696 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(840,[χ])S_{4}^{\mathrm{new}}(840, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(840,[χ])S_{4}^{\mathrm{old}}(840, [\chi]) into lower level spaces

S4old(840,[χ]) S_{4}^{\mathrm{old}}(840, [\chi]) \simeq S4new(280,[χ])S_{4}^{\mathrm{new}}(280, [\chi])2^{\oplus 2}