Properties

Label 8424.2.a
Level 84248424
Weight 22
Character orbit 8424.a
Rep. character χ8424(1,)\chi_{8424}(1,\cdot)
Character field Q\Q
Dimension 144144
Newform subspaces 3232
Sturm bound 30243024
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 8424=233413 8424 = 2^{3} \cdot 3^{4} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8424.a (trivial)
Character field: Q\Q
Newform subspaces: 32 32
Sturm bound: 30243024
Trace bound: 77
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(8424))M_{2}(\Gamma_0(8424)).

Total New Old
Modular forms 1560 144 1416
Cusp forms 1465 144 1321
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331313FrickeDim
++++++++1616
++++--2121
++-++-2020
++--++1515
-++++-1818
-++-++1717
--++++1818
----1919
Plus space++6666
Minus space-7878

Trace form

144q12q19+144q2512q43+120q4924q5524q6112q67+36q7324q79+36q97+O(q100) 144 q - 12 q^{19} + 144 q^{25} - 12 q^{43} + 120 q^{49} - 24 q^{55} - 24 q^{61} - 12 q^{67} + 36 q^{73} - 24 q^{79} + 36 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(8424))S_{2}^{\mathrm{new}}(\Gamma_0(8424)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 13
8424.2.a.a 8424.a 1.a 11 67.26667.266 Q\Q None 8424.2.a.a 00 00 4-4 3-3 - ++ - SU(2)\mathrm{SU}(2) q4q53q7+3q11+q13+2q17+q-4q^{5}-3q^{7}+3q^{11}+q^{13}+2q^{17}+\cdots
8424.2.a.b 8424.a 1.a 11 67.26667.266 Q\Q None 936.2.q.a 00 00 4-4 22 - ++ ++ SU(2)\mathrm{SU}(2) q4q5+2q7+q11q133q17+q-4q^{5}+2q^{7}+q^{11}-q^{13}-3q^{17}+\cdots
8424.2.a.c 8424.a 1.a 11 67.26667.266 Q\Q None 936.2.q.c 00 00 2-2 4-4 ++ - ++ SU(2)\mathrm{SU}(2) q2q54q74q11q133q17+q-2q^{5}-4q^{7}-4q^{11}-q^{13}-3q^{17}+\cdots
8424.2.a.d 8424.a 1.a 11 67.26667.266 Q\Q None 936.2.q.b 00 00 2-2 2-2 ++ - - SU(2)\mathrm{SU}(2) q2q52q7+3q11+q13q17+q-2q^{5}-2q^{7}+3q^{11}+q^{13}-q^{17}+\cdots
8424.2.a.e 8424.a 1.a 11 67.26667.266 Q\Q None 936.2.q.c 00 00 22 4-4 - ++ ++ SU(2)\mathrm{SU}(2) q+2q54q7+4q11q13+3q17+q+2q^{5}-4q^{7}+4q^{11}-q^{13}+3q^{17}+\cdots
8424.2.a.f 8424.a 1.a 11 67.26667.266 Q\Q None 936.2.q.b 00 00 22 2-2 - ++ - SU(2)\mathrm{SU}(2) q+2q52q73q11+q13+q17+q+2q^{5}-2q^{7}-3q^{11}+q^{13}+q^{17}+\cdots
8424.2.a.g 8424.a 1.a 11 67.26667.266 Q\Q None 8424.2.a.a 00 00 44 3-3 ++ ++ - SU(2)\mathrm{SU}(2) q+4q53q73q11+q132q17+q+4q^{5}-3q^{7}-3q^{11}+q^{13}-2q^{17}+\cdots
8424.2.a.h 8424.a 1.a 11 67.26667.266 Q\Q None 936.2.q.a 00 00 44 22 ++ - ++ SU(2)\mathrm{SU}(2) q+4q5+2q7q11q13+3q17+q+4q^{5}+2q^{7}-q^{11}-q^{13}+3q^{17}+\cdots
8424.2.a.i 8424.a 1.a 22 67.26667.266 Q(7)\Q(\sqrt{7}) None 8424.2.a.i 00 00 2-2 2-2 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q5q7+βq11q13+q+(-1+\beta )q^{5}-q^{7}+\beta q^{11}-q^{13}+\cdots
8424.2.a.j 8424.a 1.a 22 67.26667.266 Q(3)\Q(\sqrt{3}) None 8424.2.a.j 00 00 2-2 00 ++ - ++ SU(2)\mathrm{SU}(2) q+(1+β)q5+βq7+(2+β)q11+q+(-1+\beta )q^{5}+\beta q^{7}+(2+\beta )q^{11}+\cdots
8424.2.a.k 8424.a 1.a 22 67.26667.266 Q(13)\Q(\sqrt{13}) None 8424.2.a.k 00 00 1-1 55 - ++ ++ SU(2)\mathrm{SU}(2) qβq5+(3β)q7+βq11q13+q-\beta q^{5}+(3-\beta )q^{7}+\beta q^{11}-q^{13}+\cdots
8424.2.a.l 8424.a 1.a 22 67.26667.266 Q(13)\Q(\sqrt{13}) None 8424.2.a.k 00 00 11 55 ++ ++ ++ SU(2)\mathrm{SU}(2) q+βq5+(3β)q7βq11q13+q+\beta q^{5}+(3-\beta )q^{7}-\beta q^{11}-q^{13}+\cdots
8424.2.a.m 8424.a 1.a 22 67.26667.266 Q(7)\Q(\sqrt{7}) None 8424.2.a.i 00 00 22 2-2 - ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q5q7+βq11q13+βq19+q+(1+\beta )q^{5}-q^{7}+\beta q^{11}-q^{13}+\beta q^{19}+\cdots
8424.2.a.n 8424.a 1.a 22 67.26667.266 Q(3)\Q(\sqrt{3}) None 8424.2.a.j 00 00 22 00 - - ++ SU(2)\mathrm{SU}(2) q+(1+β)q5βq7+(2+β)q11+q+(1+\beta )q^{5}-\beta q^{7}+(-2+\beta )q^{11}+\cdots
8424.2.a.o 8424.a 1.a 44 67.26667.266 4.4.9225.1 None 8424.2.a.o 00 00 3-3 11 ++ ++ - SU(2)\mathrm{SU}(2) q+(1+β1)q5+β1q7+(1+β2)q11+q+(-1+\beta _{1})q^{5}+\beta _{1}q^{7}+(1+\beta _{2})q^{11}+\cdots
8424.2.a.p 8424.a 1.a 44 67.26667.266 4.4.142776.1 None 8424.2.a.p 00 00 1-1 33 ++ ++ ++ SU(2)\mathrm{SU}(2) qβ1q5+(1+β1+β3)q7+β2q11+q-\beta _{1}q^{5}+(1+\beta _{1}+\beta _{3})q^{7}+\beta _{2}q^{11}+\cdots
8424.2.a.q 8424.a 1.a 44 67.26667.266 4.4.142776.1 None 8424.2.a.p 00 00 11 33 - ++ ++ SU(2)\mathrm{SU}(2) q+β1q5+(1+β1+β3)q7β2q11+q+\beta _{1}q^{5}+(1+\beta _{1}+\beta _{3})q^{7}-\beta _{2}q^{11}+\cdots
8424.2.a.r 8424.a 1.a 44 67.26667.266 4.4.9225.1 None 8424.2.a.o 00 00 33 11 - ++ - SU(2)\mathrm{SU}(2) q+(1+β1)q5β1q7+(1+β3)q11+q+(1+\beta _{1})q^{5}-\beta _{1}q^{7}+(-1+\beta _{3})q^{11}+\cdots
8424.2.a.s 8424.a 1.a 55 67.26667.266 5.5.559701.1 None 8424.2.a.s 00 00 1-1 4-4 - ++ - SU(2)\mathrm{SU}(2) q+β3q5+(1+β1+β2)q7+β4q11+q+\beta _{3}q^{5}+(-1+\beta _{1}+\beta _{2})q^{7}+\beta _{4}q^{11}+\cdots
8424.2.a.t 8424.a 1.a 55 67.26667.266 5.5.559701.1 None 8424.2.a.s 00 00 11 4-4 ++ ++ - SU(2)\mathrm{SU}(2) qβ3q5+(1+β1+β2)q7β4q11+q-\beta _{3}q^{5}+(-1+\beta _{1}+\beta _{2})q^{7}-\beta _{4}q^{11}+\cdots
8424.2.a.u 8424.a 1.a 66 67.26667.266 6.6.20396961.1 None 936.2.q.d 00 00 1-1 2-2 ++ - - SU(2)\mathrm{SU}(2) q+β3q5β5q7+(1+β2β4+)q11+q+\beta _{3}q^{5}-\beta _{5}q^{7}+(-1+\beta _{2}-\beta _{4}+\cdots)q^{11}+\cdots
8424.2.a.v 8424.a 1.a 66 67.26667.266 6.6.20396961.1 None 936.2.q.d 00 00 11 2-2 - ++ - SU(2)\mathrm{SU}(2) qβ3q5β5q7+(1β2+β4)q11+q-\beta _{3}q^{5}-\beta _{5}q^{7}+(1-\beta _{2}+\beta _{4})q^{11}+\cdots
8424.2.a.w 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 8424.2.a.w 00 00 4-4 6-6 - - ++ SU(2)\mathrm{SU}(2) q+(1+β1)q5+(1+β2)q7+(β4+)q11+q+(-1+\beta _{1})q^{5}+(-1+\beta _{2})q^{7}+(-\beta _{4}+\cdots)q^{11}+\cdots
8424.2.a.x 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 8424.2.a.x 00 00 2-2 66 ++ - - SU(2)\mathrm{SU}(2) q+β7q5+(1+β6)q7+(1+β1β6+)q11+q+\beta _{7}q^{5}+(1+\beta _{6})q^{7}+(-1+\beta _{1}-\beta _{6}+\cdots)q^{11}+\cdots
8424.2.a.y 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 936.2.q.f 00 00 1-1 2-2 ++ ++ ++ SU(2)\mathrm{SU}(2) q+β6q5β3q7+(1+β1)q11+q+\beta _{6}q^{5}-\beta _{3}q^{7}+(-1+\beta _{1})q^{11}+\cdots
8424.2.a.z 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 936.2.q.e 00 00 1-1 44 ++ - ++ SU(2)\mathrm{SU}(2) qβ1q5β3q7+(1+β2β7)q11+q-\beta _{1}q^{5}-\beta _{3}q^{7}+(1+\beta _{2}-\beta _{7})q^{11}+\cdots
8424.2.a.ba 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 936.2.q.f 00 00 11 2-2 - - ++ SU(2)\mathrm{SU}(2) qβ6q5β3q7+(1β1)q11q13+q-\beta _{6}q^{5}-\beta _{3}q^{7}+(1-\beta _{1})q^{11}-q^{13}+\cdots
8424.2.a.bb 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 936.2.q.e 00 00 11 44 - ++ ++ SU(2)\mathrm{SU}(2) q+β1q5β3q7+(1β2+β7)q11+q+\beta _{1}q^{5}-\beta _{3}q^{7}+(-1-\beta _{2}+\beta _{7})q^{11}+\cdots
8424.2.a.bc 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 8424.2.a.x 00 00 22 66 - - - SU(2)\mathrm{SU}(2) qβ7q5+(1+β6)q7+(1β1+β6+)q11+q-\beta _{7}q^{5}+(1+\beta _{6})q^{7}+(1-\beta _{1}+\beta _{6}+\cdots)q^{11}+\cdots
8424.2.a.bd 8424.a 1.a 88 67.26667.266 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 8424.2.a.w 00 00 44 6-6 ++ - ++ SU(2)\mathrm{SU}(2) q+(1β1)q5+(1+β2)q7+(β4β5+)q11+q+(1-\beta _{1})q^{5}+(-1+\beta _{2})q^{7}+(\beta _{4}-\beta _{5}+\cdots)q^{11}+\cdots
8424.2.a.be 8424.a 1.a 1111 67.26667.266 Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots) None 936.2.q.g 00 00 3-3 44 - - - SU(2)\mathrm{SU}(2) q+β8q5β6q7β4q11+q13+q+\beta _{8}q^{5}-\beta _{6}q^{7}-\beta _{4}q^{11}+q^{13}+\cdots
8424.2.a.bf 8424.a 1.a 1111 67.26667.266 Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots) None 936.2.q.g 00 00 33 44 ++ ++ - SU(2)\mathrm{SU}(2) qβ8q5β6q7+β4q11+q13+q-\beta _{8}q^{5}-\beta _{6}q^{7}+\beta _{4}q^{11}+q^{13}+\cdots

Decomposition of S2old(Γ0(8424))S_{2}^{\mathrm{old}}(\Gamma_0(8424)) into lower level spaces

S2old(Γ0(8424)) S_{2}^{\mathrm{old}}(\Gamma_0(8424)) \simeq S2new(Γ0(24))S_{2}^{\mathrm{new}}(\Gamma_0(24))8^{\oplus 8}\oplusS2new(Γ0(26))S_{2}^{\mathrm{new}}(\Gamma_0(26))15^{\oplus 15}\oplusS2new(Γ0(27))S_{2}^{\mathrm{new}}(\Gamma_0(27))16^{\oplus 16}\oplusS2new(Γ0(36))S_{2}^{\mathrm{new}}(\Gamma_0(36))12^{\oplus 12}\oplusS2new(Γ0(39))S_{2}^{\mathrm{new}}(\Gamma_0(39))16^{\oplus 16}\oplusS2new(Γ0(52))S_{2}^{\mathrm{new}}(\Gamma_0(52))10^{\oplus 10}\oplusS2new(Γ0(54))S_{2}^{\mathrm{new}}(\Gamma_0(54))12^{\oplus 12}\oplusS2new(Γ0(72))S_{2}^{\mathrm{new}}(\Gamma_0(72))6^{\oplus 6}\oplusS2new(Γ0(78))S_{2}^{\mathrm{new}}(\Gamma_0(78))12^{\oplus 12}\oplusS2new(Γ0(81))S_{2}^{\mathrm{new}}(\Gamma_0(81))8^{\oplus 8}\oplusS2new(Γ0(104))S_{2}^{\mathrm{new}}(\Gamma_0(104))5^{\oplus 5}\oplusS2new(Γ0(108))S_{2}^{\mathrm{new}}(\Gamma_0(108))8^{\oplus 8}\oplusS2new(Γ0(117))S_{2}^{\mathrm{new}}(\Gamma_0(117))12^{\oplus 12}\oplusS2new(Γ0(156))S_{2}^{\mathrm{new}}(\Gamma_0(156))8^{\oplus 8}\oplusS2new(Γ0(162))S_{2}^{\mathrm{new}}(\Gamma_0(162))6^{\oplus 6}\oplusS2new(Γ0(216))S_{2}^{\mathrm{new}}(\Gamma_0(216))4^{\oplus 4}\oplusS2new(Γ0(234))S_{2}^{\mathrm{new}}(\Gamma_0(234))9^{\oplus 9}\oplusS2new(Γ0(312))S_{2}^{\mathrm{new}}(\Gamma_0(312))4^{\oplus 4}\oplusS2new(Γ0(324))S_{2}^{\mathrm{new}}(\Gamma_0(324))4^{\oplus 4}\oplusS2new(Γ0(351))S_{2}^{\mathrm{new}}(\Gamma_0(351))8^{\oplus 8}\oplusS2new(Γ0(468))S_{2}^{\mathrm{new}}(\Gamma_0(468))6^{\oplus 6}\oplusS2new(Γ0(648))S_{2}^{\mathrm{new}}(\Gamma_0(648))2^{\oplus 2}\oplusS2new(Γ0(702))S_{2}^{\mathrm{new}}(\Gamma_0(702))6^{\oplus 6}\oplusS2new(Γ0(936))S_{2}^{\mathrm{new}}(\Gamma_0(936))3^{\oplus 3}\oplusS2new(Γ0(1053))S_{2}^{\mathrm{new}}(\Gamma_0(1053))4^{\oplus 4}\oplusS2new(Γ0(1404))S_{2}^{\mathrm{new}}(\Gamma_0(1404))4^{\oplus 4}\oplusS2new(Γ0(2106))S_{2}^{\mathrm{new}}(\Gamma_0(2106))3^{\oplus 3}\oplusS2new(Γ0(2808))S_{2}^{\mathrm{new}}(\Gamma_0(2808))2^{\oplus 2}\oplusS2new(Γ0(4212))S_{2}^{\mathrm{new}}(\Gamma_0(4212))2^{\oplus 2}