Properties

Label 8424.2.a
Level $8424$
Weight $2$
Character orbit 8424.a
Rep. character $\chi_{8424}(1,\cdot)$
Character field $\Q$
Dimension $144$
Newform subspaces $32$
Sturm bound $3024$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8424 = 2^{3} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8424.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 32 \)
Sturm bound: \(3024\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8424))\).

Total New Old
Modular forms 1560 144 1416
Cusp forms 1465 144 1321
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(16\)
\(+\)\(+\)\(-\)\(-\)\(21\)
\(+\)\(-\)\(+\)\(-\)\(20\)
\(+\)\(-\)\(-\)\(+\)\(15\)
\(-\)\(+\)\(+\)\(-\)\(18\)
\(-\)\(+\)\(-\)\(+\)\(17\)
\(-\)\(-\)\(+\)\(+\)\(18\)
\(-\)\(-\)\(-\)\(-\)\(19\)
Plus space\(+\)\(66\)
Minus space\(-\)\(78\)

Trace form

\( 144 q - 12 q^{19} + 144 q^{25} - 12 q^{43} + 120 q^{49} - 24 q^{55} - 24 q^{61} - 12 q^{67} + 36 q^{73} - 24 q^{79} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8424))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 13
8424.2.a.a 8424.a 1.a $1$ $67.266$ \(\Q\) None 8424.2.a.a \(0\) \(0\) \(-4\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}-3q^{7}+3q^{11}+q^{13}+2q^{17}+\cdots\)
8424.2.a.b 8424.a 1.a $1$ $67.266$ \(\Q\) None 936.2.q.a \(0\) \(0\) \(-4\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{5}+2q^{7}+q^{11}-q^{13}-3q^{17}+\cdots\)
8424.2.a.c 8424.a 1.a $1$ $67.266$ \(\Q\) None 936.2.q.c \(0\) \(0\) \(-2\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-4q^{7}-4q^{11}-q^{13}-3q^{17}+\cdots\)
8424.2.a.d 8424.a 1.a $1$ $67.266$ \(\Q\) None 936.2.q.b \(0\) \(0\) \(-2\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}-2q^{7}+3q^{11}+q^{13}-q^{17}+\cdots\)
8424.2.a.e 8424.a 1.a $1$ $67.266$ \(\Q\) None 936.2.q.c \(0\) \(0\) \(2\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-4q^{7}+4q^{11}-q^{13}+3q^{17}+\cdots\)
8424.2.a.f 8424.a 1.a $1$ $67.266$ \(\Q\) None 936.2.q.b \(0\) \(0\) \(2\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-2q^{7}-3q^{11}+q^{13}+q^{17}+\cdots\)
8424.2.a.g 8424.a 1.a $1$ $67.266$ \(\Q\) None 8424.2.a.a \(0\) \(0\) \(4\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}-3q^{7}-3q^{11}+q^{13}-2q^{17}+\cdots\)
8424.2.a.h 8424.a 1.a $1$ $67.266$ \(\Q\) None 936.2.q.a \(0\) \(0\) \(4\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{5}+2q^{7}-q^{11}-q^{13}+3q^{17}+\cdots\)
8424.2.a.i 8424.a 1.a $2$ $67.266$ \(\Q(\sqrt{7}) \) None 8424.2.a.i \(0\) \(0\) \(-2\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{5}-q^{7}+\beta q^{11}-q^{13}+\cdots\)
8424.2.a.j 8424.a 1.a $2$ $67.266$ \(\Q(\sqrt{3}) \) None 8424.2.a.j \(0\) \(0\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{5}+\beta q^{7}+(2+\beta )q^{11}+\cdots\)
8424.2.a.k 8424.a 1.a $2$ $67.266$ \(\Q(\sqrt{13}) \) None 8424.2.a.k \(0\) \(0\) \(-1\) \(5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+(3-\beta )q^{7}+\beta q^{11}-q^{13}+\cdots\)
8424.2.a.l 8424.a 1.a $2$ $67.266$ \(\Q(\sqrt{13}) \) None 8424.2.a.k \(0\) \(0\) \(1\) \(5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(3-\beta )q^{7}-\beta q^{11}-q^{13}+\cdots\)
8424.2.a.m 8424.a 1.a $2$ $67.266$ \(\Q(\sqrt{7}) \) None 8424.2.a.i \(0\) \(0\) \(2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}-q^{7}+\beta q^{11}-q^{13}+\beta q^{19}+\cdots\)
8424.2.a.n 8424.a 1.a $2$ $67.266$ \(\Q(\sqrt{3}) \) None 8424.2.a.j \(0\) \(0\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}-\beta q^{7}+(-2+\beta )q^{11}+\cdots\)
8424.2.a.o 8424.a 1.a $4$ $67.266$ 4.4.9225.1 None 8424.2.a.o \(0\) \(0\) \(-3\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+\beta _{1}q^{7}+(1+\beta _{2})q^{11}+\cdots\)
8424.2.a.p 8424.a 1.a $4$ $67.266$ 4.4.142776.1 None 8424.2.a.p \(0\) \(0\) \(-1\) \(3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}+(1+\beta _{1}+\beta _{3})q^{7}+\beta _{2}q^{11}+\cdots\)
8424.2.a.q 8424.a 1.a $4$ $67.266$ 4.4.142776.1 None 8424.2.a.p \(0\) \(0\) \(1\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+(1+\beta _{1}+\beta _{3})q^{7}-\beta _{2}q^{11}+\cdots\)
8424.2.a.r 8424.a 1.a $4$ $67.266$ 4.4.9225.1 None 8424.2.a.o \(0\) \(0\) \(3\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{5}-\beta _{1}q^{7}+(-1+\beta _{3})q^{11}+\cdots\)
8424.2.a.s 8424.a 1.a $5$ $67.266$ 5.5.559701.1 None 8424.2.a.s \(0\) \(0\) \(-1\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{5}+(-1+\beta _{1}+\beta _{2})q^{7}+\beta _{4}q^{11}+\cdots\)
8424.2.a.t 8424.a 1.a $5$ $67.266$ 5.5.559701.1 None 8424.2.a.s \(0\) \(0\) \(1\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{5}+(-1+\beta _{1}+\beta _{2})q^{7}-\beta _{4}q^{11}+\cdots\)
8424.2.a.u 8424.a 1.a $6$ $67.266$ 6.6.20396961.1 None 936.2.q.d \(0\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{5}-\beta _{5}q^{7}+(-1+\beta _{2}-\beta _{4}+\cdots)q^{11}+\cdots\)
8424.2.a.v 8424.a 1.a $6$ $67.266$ 6.6.20396961.1 None 936.2.q.d \(0\) \(0\) \(1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{5}-\beta _{5}q^{7}+(1-\beta _{2}+\beta _{4})q^{11}+\cdots\)
8424.2.a.w 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 8424.2.a.w \(0\) \(0\) \(-4\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+(-1+\beta _{2})q^{7}+(-\beta _{4}+\cdots)q^{11}+\cdots\)
8424.2.a.x 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 8424.2.a.x \(0\) \(0\) \(-2\) \(6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{7}q^{5}+(1+\beta _{6})q^{7}+(-1+\beta _{1}-\beta _{6}+\cdots)q^{11}+\cdots\)
8424.2.a.y 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 936.2.q.f \(0\) \(0\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{6}q^{5}-\beta _{3}q^{7}+(-1+\beta _{1})q^{11}+\cdots\)
8424.2.a.z 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 936.2.q.e \(0\) \(0\) \(-1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{5}-\beta _{3}q^{7}+(1+\beta _{2}-\beta _{7})q^{11}+\cdots\)
8424.2.a.ba 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 936.2.q.f \(0\) \(0\) \(1\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{6}q^{5}-\beta _{3}q^{7}+(1-\beta _{1})q^{11}-q^{13}+\cdots\)
8424.2.a.bb 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 936.2.q.e \(0\) \(0\) \(1\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}-\beta _{3}q^{7}+(-1-\beta _{2}+\beta _{7})q^{11}+\cdots\)
8424.2.a.bc 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 8424.2.a.x \(0\) \(0\) \(2\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{7}q^{5}+(1+\beta _{6})q^{7}+(1-\beta _{1}+\beta _{6}+\cdots)q^{11}+\cdots\)
8424.2.a.bd 8424.a 1.a $8$ $67.266$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 8424.2.a.w \(0\) \(0\) \(4\) \(-6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{5}+(-1+\beta _{2})q^{7}+(\beta _{4}-\beta _{5}+\cdots)q^{11}+\cdots\)
8424.2.a.be 8424.a 1.a $11$ $67.266$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 936.2.q.g \(0\) \(0\) \(-3\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{8}q^{5}-\beta _{6}q^{7}-\beta _{4}q^{11}+q^{13}+\cdots\)
8424.2.a.bf 8424.a 1.a $11$ $67.266$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 936.2.q.g \(0\) \(0\) \(3\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{8}q^{5}-\beta _{6}q^{7}+\beta _{4}q^{11}+q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8424))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8424)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(351))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(648))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(702))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(936))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1053))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1404))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2106))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2808))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4212))\)\(^{\oplus 2}\)