Defining parameters
Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 845.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(182\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(845))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 51 | 53 |
Cusp forms | 77 | 51 | 26 |
Eisenstein series | 27 | 0 | 27 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(-\) | \(-\) | \(16\) |
\(-\) | \(+\) | \(-\) | \(16\) |
\(-\) | \(-\) | \(+\) | \(10\) |
Plus space | \(+\) | \(19\) | |
Minus space | \(-\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(845))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(845))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(845)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)