Defining parameters
Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 845.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(182\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(845, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 106 | 88 | 18 |
Cusp forms | 78 | 66 | 12 |
Eisenstein series | 28 | 22 | 6 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(845, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(845, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(845, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)