Defining parameters
Level: | \( N \) | \(=\) | \( 8464 = 2^{4} \cdot 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8464.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 62 \) | ||
Sturm bound: | \(2208\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8464))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1176 | 263 | 913 |
Cusp forms | 1033 | 242 | 791 |
Eisenstein series | 143 | 21 | 122 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(60\) |
\(+\) | \(-\) | \(-\) | \(66\) |
\(-\) | \(+\) | \(-\) | \(61\) |
\(-\) | \(-\) | \(+\) | \(55\) |
Plus space | \(+\) | \(115\) | |
Minus space | \(-\) | \(127\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8464))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8464))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8464)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1058))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2116))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4232))\)\(^{\oplus 2}\)