Properties

Label 847.1.j
Level $847$
Weight $1$
Character orbit 847.j
Rep. character $\chi_{847}(27,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $12$
Newform subspaces $3$
Sturm bound $88$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 847.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 3 \)
Sturm bound: \(88\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(847, [\chi])\).

Total New Old
Modular forms 68 44 24
Cusp forms 20 12 8
Eisenstein series 48 32 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + 2 q^{2} + q^{4} + q^{7} - q^{8} - 3 q^{9} - q^{14} - 3 q^{18} - 6 q^{23} - 3 q^{25} - 2 q^{28} + 2 q^{29} - 4 q^{32} + q^{36} - q^{37} + 2 q^{43} - q^{46} - 3 q^{49} + 2 q^{50} - q^{53} - 12 q^{56}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(847, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
847.1.j.a 847.j 77.j $4$ $0.423$ \(\Q(\zeta_{10})\) $D_{5}$ \(\Q(\sqrt{-7}) \) None 77.1.j.a \(-3\) \(0\) \(0\) \(1\) \(q+(-1-\zeta_{10}^{4})q^{2}+(1-\zeta_{10}^{3}+\zeta_{10}^{4}+\cdots)q^{4}+\cdots\)
847.1.j.b 847.j 77.j $4$ $0.423$ \(\Q(\zeta_{10})\) $D_{5}$ \(\Q(\sqrt{-7}) \) None 77.1.j.a \(2\) \(0\) \(0\) \(1\) \(q+(\zeta_{10}+\zeta_{10}^{3})q^{2}+(-\zeta_{10}+\zeta_{10}^{2}+\cdots)q^{4}+\cdots\)
847.1.j.c 847.j 77.j $4$ $0.423$ \(\Q(\zeta_{10})\) $D_{5}$ \(\Q(\sqrt{-7}) \) None 77.1.j.a \(3\) \(0\) \(0\) \(-1\) \(q+(1+\zeta_{10}^{4})q^{2}+(1-\zeta_{10}^{3}+\zeta_{10}^{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(847, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(847, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)