Defining parameters
Level: | \( N \) | \(=\) | \( 847 = 7 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 847.j (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(88\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(847, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68 | 44 | 24 |
Cusp forms | 20 | 12 | 8 |
Eisenstein series | 48 | 32 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(847, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
847.1.j.a | $4$ | $0.423$ | \(\Q(\zeta_{10})\) | $D_{5}$ | \(\Q(\sqrt{-7}) \) | None | \(-3\) | \(0\) | \(0\) | \(1\) | \(q+(-1-\zeta_{10}^{4})q^{2}+(1-\zeta_{10}^{3}+\zeta_{10}^{4}+\cdots)q^{4}+\cdots\) |
847.1.j.b | $4$ | $0.423$ | \(\Q(\zeta_{10})\) | $D_{5}$ | \(\Q(\sqrt{-7}) \) | None | \(2\) | \(0\) | \(0\) | \(1\) | \(q+(\zeta_{10}+\zeta_{10}^{3})q^{2}+(-\zeta_{10}+\zeta_{10}^{2}+\cdots)q^{4}+\cdots\) |
847.1.j.c | $4$ | $0.423$ | \(\Q(\zeta_{10})\) | $D_{5}$ | \(\Q(\sqrt{-7}) \) | None | \(3\) | \(0\) | \(0\) | \(-1\) | \(q+(1+\zeta_{10}^{4})q^{2}+(1-\zeta_{10}^{3}+\zeta_{10}^{4}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(847, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(847, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)