Properties

Label 850.2.l
Level $850$
Weight $2$
Character orbit 850.l
Rep. character $\chi_{850}(151,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $116$
Newform subspaces $9$
Sturm bound $270$
Trace bound $18$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.l (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 9 \)
Sturm bound: \(270\)
Trace bound: \(18\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(850, [\chi])\).

Total New Old
Modular forms 592 116 476
Cusp forms 496 116 380
Eisenstein series 96 0 96

Trace form

\( 116 q - 4 q^{9} + O(q^{10}) \) \( 116 q - 4 q^{9} - 12 q^{11} + 4 q^{12} + 8 q^{14} - 116 q^{16} + 4 q^{18} + 8 q^{19} + 8 q^{22} - 16 q^{23} + 4 q^{24} - 32 q^{26} + 36 q^{27} + 8 q^{28} + 24 q^{29} - 32 q^{31} + 16 q^{33} + 16 q^{34} - 4 q^{36} + 24 q^{37} + 72 q^{41} - 40 q^{42} + 12 q^{43} - 24 q^{44} + 32 q^{46} + 48 q^{51} - 24 q^{52} + 40 q^{53} + 28 q^{54} - 8 q^{57} - 60 q^{59} + 32 q^{61} - 48 q^{62} - 56 q^{63} + 20 q^{66} + 8 q^{67} + 32 q^{69} - 40 q^{71} - 48 q^{74} - 8 q^{76} - 40 q^{77} - 64 q^{78} + 24 q^{79} - 44 q^{82} - 52 q^{83} - 32 q^{84} + 24 q^{86} - 8 q^{87} - 28 q^{88} - 64 q^{91} - 16 q^{92} + 72 q^{93} - 48 q^{94} + 20 q^{97} + 48 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(850, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
850.2.l.a 850.l 17.d $4$ $6.787$ \(\Q(\zeta_{8})\) None 34.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-\zeta_{8}^{3}q^{2}+(-\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}-\zeta_{8}^{2}q^{4}+\cdots\)
850.2.l.b 850.l 17.d $8$ $6.787$ 8.0.18939904.2 None 850.2.l.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-\beta _{5}q^{2}+\beta _{4}q^{3}-\beta _{7}q^{4}-\beta _{3}q^{6}+\cdots\)
850.2.l.c 850.l 17.d $8$ $6.787$ 8.0.18939904.2 None 850.2.l.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\beta _{5}q^{2}+(\beta _{4}-\beta _{5}+\beta _{7})q^{3}-\beta _{7}q^{4}+\cdots\)
850.2.l.d 850.l 17.d $8$ $6.787$ \(\Q(\zeta_{16})\) None 170.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-\zeta_{16}^{6}q^{2}+(\zeta_{16}+\zeta_{16}^{3}+\zeta_{16}^{4}+\cdots)q^{3}+\cdots\)
850.2.l.e 850.l 17.d $16$ $6.787$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 170.2.k.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-\beta _{5}q^{2}-\beta _{13}q^{3}+\beta _{1}q^{4}+\beta _{12}q^{6}+\cdots\)
850.2.l.f 850.l 17.d $16$ $6.787$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 850.2.l.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\beta _{5}q^{2}-\beta _{4}q^{3}-\beta _{7}q^{4}+\beta _{1}q^{6}+\cdots\)
850.2.l.g 850.l 17.d $16$ $6.787$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 850.2.l.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-\beta _{5}q^{2}+\beta _{4}q^{3}-\beta _{7}q^{4}+\beta _{1}q^{6}+\cdots\)
850.2.l.h 850.l 17.d $20$ $6.787$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 170.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\beta _{8}q^{2}-\beta _{1}q^{3}-\beta _{14}q^{4}+\beta _{2}q^{6}+\cdots\)
850.2.l.i 850.l 17.d $20$ $6.787$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 170.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\beta _{11}q^{2}+\beta _{2}q^{3}+\beta _{14}q^{4}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 2}\)