Defining parameters
Level: | \( N \) | \(=\) | \( 850 = 2 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 850.v (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(270\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(850, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1176 | 216 | 960 |
Cusp forms | 984 | 216 | 768 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(850, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
850.2.v.a | $24$ | $6.787$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
850.2.v.b | $24$ | $6.787$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
850.2.v.c | $32$ | $6.787$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
850.2.v.d | $40$ | $6.787$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
850.2.v.e | $48$ | $6.787$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
850.2.v.f | $48$ | $6.787$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(850, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 2}\)