Properties

Label 850.2.v
Level 850850
Weight 22
Character orbit 850.v
Rep. character χ850(107,)\chi_{850}(107,\cdot)
Character field Q(ζ16)\Q(\zeta_{16})
Dimension 216216
Newform subspaces 66
Sturm bound 270270
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 850=25217 850 = 2 \cdot 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 850.v (of order 1616 and degree 88)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 85 85
Character field: Q(ζ16)\Q(\zeta_{16})
Newform subspaces: 6 6
Sturm bound: 270270
Trace bound: 1313
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(850,[χ])M_{2}(850, [\chi]).

Total New Old
Modular forms 1176 216 960
Cusp forms 984 216 768
Eisenstein series 192 0 192

Trace form

216q48q27+16q28+64q3132q3364q34+32q37+128q3940q41+48q42+32q5232q53+144q57112q59+48q62+48q6332q6764q71+192q99+O(q100) 216 q - 48 q^{27} + 16 q^{28} + 64 q^{31} - 32 q^{33} - 64 q^{34} + 32 q^{37} + 128 q^{39} - 40 q^{41} + 48 q^{42} + 32 q^{52} - 32 q^{53} + 144 q^{57} - 112 q^{59} + 48 q^{62} + 48 q^{63} - 32 q^{67} - 64 q^{71}+ \cdots - 192 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(850,[χ])S_{2}^{\mathrm{new}}(850, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
850.2.v.a 850.v 85.r 2424 6.7876.787 None 850.2.s.a 00 00 00 00 SU(2)[C16]\mathrm{SU}(2)[C_{16}]
850.2.v.b 850.v 85.r 2424 6.7876.787 None 850.2.s.a 00 00 00 00 SU(2)[C16]\mathrm{SU}(2)[C_{16}]
850.2.v.c 850.v 85.r 3232 6.7876.787 None 170.2.o.a 00 00 00 00 SU(2)[C16]\mathrm{SU}(2)[C_{16}]
850.2.v.d 850.v 85.r 4040 6.7876.787 None 170.2.o.b 00 00 00 00 SU(2)[C16]\mathrm{SU}(2)[C_{16}]
850.2.v.e 850.v 85.r 4848 6.7876.787 None 850.2.s.e 00 00 00 00 SU(2)[C16]\mathrm{SU}(2)[C_{16}]
850.2.v.f 850.v 85.r 4848 6.7876.787 None 850.2.s.e 00 00 00 00 SU(2)[C16]\mathrm{SU}(2)[C_{16}]

Decomposition of S2old(850,[χ])S_{2}^{\mathrm{old}}(850, [\chi]) into lower level spaces

S2old(850,[χ]) S_{2}^{\mathrm{old}}(850, [\chi]) \simeq S2new(85,[χ])S_{2}^{\mathrm{new}}(85, [\chi])4^{\oplus 4}\oplusS2new(170,[χ])S_{2}^{\mathrm{new}}(170, [\chi])2^{\oplus 2}\oplusS2new(425,[χ])S_{2}^{\mathrm{new}}(425, [\chi])2^{\oplus 2}