Defining parameters
Level: | \( N \) | \(=\) | \( 8512 = 2^{6} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8512.dx (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 2128 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(2560\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5184 | 1296 | 3888 |
Cusp forms | 5056 | 1264 | 3792 |
Eisenstein series | 128 | 32 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(8512, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8512, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 3}\)