Properties

Label 8512.2.q
Level $8512$
Weight $2$
Character orbit 8512.q
Rep. character $\chi_{8512}(2433,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $576$
Sturm bound $2560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(2560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8512, [\chi])\).

Total New Old
Modular forms 2608 576 2032
Cusp forms 2512 576 1936
Eisenstein series 96 0 96

Decomposition of \(S_{2}^{\mathrm{new}}(8512, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(8512, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4256, [\chi])\)\(^{\oplus 2}\)