Properties

Label 855.2.bx
Level $855$
Weight $2$
Character orbit 855.bx
Rep. character $\chi_{855}(68,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $464$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.bx (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 855 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(855, [\chi])\).

Total New Old
Modular forms 496 496 0
Cusp forms 464 464 0
Eisenstein series 32 32 0

Trace form

\( 464 q - 2 q^{3} - 6 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} - 8 q^{15} - 424 q^{16} - 18 q^{17} - 24 q^{18} - 12 q^{20} - 4 q^{21} + 10 q^{22} + 2 q^{25} - 2 q^{27} - 20 q^{28}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(855, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
855.2.bx.a 855.bx 855.ax $464$ $6.827$ None 855.2.bx.a \(0\) \(-2\) \(-6\) \(-4\) $\mathrm{SU}(2)[C_{12}]$