Defining parameters
Level: | \( N \) | \(=\) | \( 855 = 3^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 855.n (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(855, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 72 | 184 |
Cusp forms | 224 | 72 | 152 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(855, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
855.2.n.a | $4$ | $6.827$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-12\) | \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\) |
855.2.n.b | $4$ | $6.827$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\) |
855.2.n.c | $8$ | $6.827$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+(2\zeta_{24}-2\zeta_{24}^{5})q^{2}-2\zeta_{24}^{6}q^{4}+\cdots\) |
855.2.n.d | $20$ | $6.827$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{4}+\beta _{10})q^{4}+(\beta _{1}-\beta _{16}+\cdots)q^{5}+\cdots\) |
855.2.n.e | $36$ | $6.827$ | None | \(0\) | \(0\) | \(0\) | \(4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(855, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(855, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)