Properties

Label 855.2.n
Level 855855
Weight 22
Character orbit 855.n
Rep. character χ855(647,)\chi_{855}(647,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 7272
Newform subspaces 55
Sturm bound 240240
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 855=32519 855 = 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 855.n (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 15 15
Character field: Q(i)\Q(i)
Newform subspaces: 5 5
Sturm bound: 240240
Trace bound: 77
Distinguishing TpT_p: 22, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(855,[χ])M_{2}(855, [\chi]).

Total New Old
Modular forms 256 72 184
Cusp forms 224 72 152
Eisenstein series 32 0 32

Trace form

72q+16q7+16q10+8q1372q1648q2216q2832q31+24q37+24q40+56q43+32q4672q52+16q55+72q58+32q61+64q67128q70++56q97+O(q100) 72 q + 16 q^{7} + 16 q^{10} + 8 q^{13} - 72 q^{16} - 48 q^{22} - 16 q^{28} - 32 q^{31} + 24 q^{37} + 24 q^{40} + 56 q^{43} + 32 q^{46} - 72 q^{52} + 16 q^{55} + 72 q^{58} + 32 q^{61} + 64 q^{67} - 128 q^{70}+ \cdots + 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
855.2.n.a 855.n 15.e 44 6.8276.827 Q(ζ8)\Q(\zeta_{8}) None 855.2.n.a 00 00 00 12-12 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+ζ8q2ζ82q4+(2ζ8ζ83)q5+q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots
855.2.n.b 855.n 15.e 44 6.8276.827 Q(ζ8)\Q(\zeta_{8}) None 855.2.n.b 00 00 00 1212 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+ζ8q2ζ82q4+(ζ8+2ζ83)q5+q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots
855.2.n.c 855.n 15.e 88 6.8276.827 Q(ζ24)\Q(\zeta_{24}) None 855.2.n.c 00 00 00 1212 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(2ζ242ζ245)q22ζ246q4+q+(2\zeta_{24}-2\zeta_{24}^{5})q^{2}-2\zeta_{24}^{6}q^{4}+\cdots
855.2.n.d 855.n 15.e 2020 6.8276.827 Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots) None 855.2.n.d 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β1q2+(β4+β10)q4+(β1β16+)q5+q+\beta _{1}q^{2}+(\beta _{4}+\beta _{10})q^{4}+(\beta _{1}-\beta _{16}+\cdots)q^{5}+\cdots
855.2.n.e 855.n 15.e 3636 6.8276.827 None 855.2.n.e 00 00 00 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(855,[χ])S_{2}^{\mathrm{old}}(855, [\chi]) into lower level spaces

S2old(855,[χ]) S_{2}^{\mathrm{old}}(855, [\chi]) \simeq S2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])2^{\oplus 2}\oplusS2new(285,[χ])S_{2}^{\mathrm{new}}(285, [\chi])2^{\oplus 2}