Properties

Label 855.2.n
Level $855$
Weight $2$
Character orbit 855.n
Rep. character $\chi_{855}(647,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $5$
Sturm bound $240$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(240\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(855, [\chi])\).

Total New Old
Modular forms 256 72 184
Cusp forms 224 72 152
Eisenstein series 32 0 32

Trace form

\( 72 q + 16 q^{7} + 16 q^{10} + 8 q^{13} - 72 q^{16} - 48 q^{22} - 16 q^{28} - 32 q^{31} + 24 q^{37} + 24 q^{40} + 56 q^{43} + 32 q^{46} - 72 q^{52} + 16 q^{55} + 72 q^{58} + 32 q^{61} + 64 q^{67} - 128 q^{70}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(855, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
855.2.n.a 855.n 15.e $4$ $6.827$ \(\Q(\zeta_{8})\) None 855.2.n.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\)
855.2.n.b 855.n 15.e $4$ $6.827$ \(\Q(\zeta_{8})\) None 855.2.n.b \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\)
855.2.n.c 855.n 15.e $8$ $6.827$ \(\Q(\zeta_{24})\) None 855.2.n.c \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2\zeta_{24}-2\zeta_{24}^{5})q^{2}-2\zeta_{24}^{6}q^{4}+\cdots\)
855.2.n.d 855.n 15.e $20$ $6.827$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 855.2.n.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+(\beta _{4}+\beta _{10})q^{4}+(\beta _{1}-\beta _{16}+\cdots)q^{5}+\cdots\)
855.2.n.e 855.n 15.e $36$ $6.827$ None 855.2.n.e \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(855, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(855, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)