Properties

Label 864.5.t
Level $864$
Weight $5$
Character orbit 864.t
Rep. character $\chi_{864}(559,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $92$
Newform subspaces $2$
Sturm bound $720$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(720\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(864, [\chi])\).

Total New Old
Modular forms 1200 100 1100
Cusp forms 1104 92 1012
Eisenstein series 96 8 88

Trace form

\( 92 q + O(q^{10}) \) \( 92 q - 2 q^{11} + 8 q^{17} + 8 q^{19} + 4748 q^{25} - 2508 q^{35} - 1102 q^{41} + 2 q^{43} + 11660 q^{49} - 3746 q^{59} + 2502 q^{65} + 2 q^{67} - 8 q^{73} - 5282 q^{83} - 13624 q^{89} + 9612 q^{91} - 2 q^{97} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(864, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
864.5.t.a 864.t 72.p $4$ $89.312$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) 72.5.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+(-23\beta _{1}+7\beta _{2})q^{11}+(-287-2\beta _{3})q^{17}+\cdots\)
864.5.t.b 864.t 72.p $88$ $89.312$ None 72.5.p.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{5}^{\mathrm{old}}(864, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(864, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)