Properties

Label 864.5.t
Level 864864
Weight 55
Character orbit 864.t
Rep. character χ864(559,)\chi_{864}(559,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9292
Newform subspaces 22
Sturm bound 720720
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 864=2533 864 = 2^{5} \cdot 3^{3}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 864.t (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 72 72
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 720720
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M5(864,[χ])M_{5}(864, [\chi]).

Total New Old
Modular forms 1200 100 1100
Cusp forms 1104 92 1012
Eisenstein series 96 8 88

Trace form

92q2q11+8q17+8q19+4748q252508q351102q41+2q43+11660q493746q59+2502q65+2q678q735282q8313624q89+9612q912q97+O(q100) 92 q - 2 q^{11} + 8 q^{17} + 8 q^{19} + 4748 q^{25} - 2508 q^{35} - 1102 q^{41} + 2 q^{43} + 11660 q^{49} - 3746 q^{59} + 2502 q^{65} + 2 q^{67} - 8 q^{73} - 5282 q^{83} - 13624 q^{89} + 9612 q^{91} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S5new(864,[χ])S_{5}^{\mathrm{new}}(864, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
864.5.t.a 864.t 72.p 44 89.31289.312 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) Q(2)\Q(\sqrt{-2}) 72.5.p.a 00 00 00 00 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(23β1+7β2)q11+(2872β3)q17+q+(-23\beta _{1}+7\beta _{2})q^{11}+(-287-2\beta _{3})q^{17}+\cdots
864.5.t.b 864.t 72.p 8888 89.31289.312 None 72.5.p.b 00 00 00 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S5old(864,[χ])S_{5}^{\mathrm{old}}(864, [\chi]) into lower level spaces

S5old(864,[χ]) S_{5}^{\mathrm{old}}(864, [\chi]) \simeq S5new(72,[χ])S_{5}^{\mathrm{new}}(72, [\chi])6^{\oplus 6}\oplusS5new(216,[χ])S_{5}^{\mathrm{new}}(216, [\chi])3^{\oplus 3}\oplusS5new(288,[χ])S_{5}^{\mathrm{new}}(288, [\chi])2^{\oplus 2}