Defining parameters
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(864, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1200 | 100 | 1100 |
Cusp forms | 1104 | 92 | 1012 |
Eisenstein series | 96 | 8 | 88 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(864, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
864.5.t.a | $4$ | $89.312$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-23\beta _{1}+7\beta _{2})q^{11}+(-287-2\beta _{3})q^{17}+\cdots\) |
864.5.t.b | $88$ | $89.312$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{5}^{\mathrm{old}}(864, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(864, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)