Properties

Label 8640.2.a.di.1.1
Level $8640$
Weight $2$
Character 8640.1
Self dual yes
Analytic conductor $68.991$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8640,2,Mod(1,8640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8640.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8640 = 2^{6} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8640.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.9907473464\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4320)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 8640.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -0.561553 q^{7} +3.56155 q^{11} -1.00000 q^{13} -6.68466 q^{17} -7.68466 q^{19} -3.56155 q^{23} +1.00000 q^{25} -4.68466 q^{29} +2.43845 q^{31} -0.561553 q^{35} +5.68466 q^{37} +4.00000 q^{41} +4.68466 q^{43} +3.56155 q^{47} -6.68466 q^{49} +3.56155 q^{55} -1.12311 q^{59} +9.68466 q^{61} -1.00000 q^{65} -5.43845 q^{67} +14.2462 q^{71} +13.6847 q^{73} -2.00000 q^{77} +17.2462 q^{79} +4.87689 q^{83} -6.68466 q^{85} +11.3693 q^{89} +0.561553 q^{91} -7.68466 q^{95} -2.31534 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 3 q^{7} + 3 q^{11} - 2 q^{13} - q^{17} - 3 q^{19} - 3 q^{23} + 2 q^{25} + 3 q^{29} + 9 q^{31} + 3 q^{35} - q^{37} + 8 q^{41} - 3 q^{43} + 3 q^{47} - q^{49} + 3 q^{55} + 6 q^{59} + 7 q^{61}+ \cdots - 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.561553 −0.212247 −0.106124 0.994353i \(-0.533844\pi\)
−0.106124 + 0.994353i \(0.533844\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.56155 1.07385 0.536924 0.843630i \(-0.319586\pi\)
0.536924 + 0.843630i \(0.319586\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.68466 −1.62127 −0.810634 0.585553i \(-0.800877\pi\)
−0.810634 + 0.585553i \(0.800877\pi\)
\(18\) 0 0
\(19\) −7.68466 −1.76298 −0.881491 0.472201i \(-0.843460\pi\)
−0.881491 + 0.472201i \(0.843460\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.56155 −0.742635 −0.371318 0.928506i \(-0.621094\pi\)
−0.371318 + 0.928506i \(0.621094\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.68466 −0.869919 −0.434960 0.900450i \(-0.643237\pi\)
−0.434960 + 0.900450i \(0.643237\pi\)
\(30\) 0 0
\(31\) 2.43845 0.437958 0.218979 0.975730i \(-0.429727\pi\)
0.218979 + 0.975730i \(0.429727\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.561553 −0.0949197
\(36\) 0 0
\(37\) 5.68466 0.934552 0.467276 0.884111i \(-0.345235\pi\)
0.467276 + 0.884111i \(0.345235\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 4.68466 0.714404 0.357202 0.934027i \(-0.383731\pi\)
0.357202 + 0.934027i \(0.383731\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.56155 0.519506 0.259753 0.965675i \(-0.416359\pi\)
0.259753 + 0.965675i \(0.416359\pi\)
\(48\) 0 0
\(49\) −6.68466 −0.954951
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 3.56155 0.480240
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.12311 −0.146216 −0.0731079 0.997324i \(-0.523292\pi\)
−0.0731079 + 0.997324i \(0.523292\pi\)
\(60\) 0 0
\(61\) 9.68466 1.23999 0.619997 0.784604i \(-0.287134\pi\)
0.619997 + 0.784604i \(0.287134\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) −5.43845 −0.664412 −0.332206 0.943207i \(-0.607793\pi\)
−0.332206 + 0.943207i \(0.607793\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.2462 1.69071 0.845357 0.534202i \(-0.179388\pi\)
0.845357 + 0.534202i \(0.179388\pi\)
\(72\) 0 0
\(73\) 13.6847 1.60167 0.800834 0.598886i \(-0.204390\pi\)
0.800834 + 0.598886i \(0.204390\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 17.2462 1.94035 0.970175 0.242405i \(-0.0779362\pi\)
0.970175 + 0.242405i \(0.0779362\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.87689 0.535309 0.267654 0.963515i \(-0.413751\pi\)
0.267654 + 0.963515i \(0.413751\pi\)
\(84\) 0 0
\(85\) −6.68466 −0.725053
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.3693 1.20515 0.602573 0.798064i \(-0.294142\pi\)
0.602573 + 0.798064i \(0.294142\pi\)
\(90\) 0 0
\(91\) 0.561553 0.0588667
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.68466 −0.788429
\(96\) 0 0
\(97\) −2.31534 −0.235087 −0.117544 0.993068i \(-0.537502\pi\)
−0.117544 + 0.993068i \(0.537502\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.68466 0.864156 0.432078 0.901836i \(-0.357781\pi\)
0.432078 + 0.901836i \(0.357781\pi\)
\(102\) 0 0
\(103\) 11.4384 1.12706 0.563532 0.826094i \(-0.309442\pi\)
0.563532 + 0.826094i \(0.309442\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.24621 0.797191 0.398596 0.917127i \(-0.369498\pi\)
0.398596 + 0.917127i \(0.369498\pi\)
\(108\) 0 0
\(109\) −15.3693 −1.47211 −0.736057 0.676920i \(-0.763314\pi\)
−0.736057 + 0.676920i \(0.763314\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.31534 0.500025 0.250013 0.968243i \(-0.419565\pi\)
0.250013 + 0.968243i \(0.419565\pi\)
\(114\) 0 0
\(115\) −3.56155 −0.332117
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.75379 0.344109
\(120\) 0 0
\(121\) 1.68466 0.153151
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 7.12311 0.632073 0.316037 0.948747i \(-0.397648\pi\)
0.316037 + 0.948747i \(0.397648\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.8078 1.03165 0.515825 0.856694i \(-0.327486\pi\)
0.515825 + 0.856694i \(0.327486\pi\)
\(132\) 0 0
\(133\) 4.31534 0.374188
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 2.80776 0.238151 0.119076 0.992885i \(-0.462007\pi\)
0.119076 + 0.992885i \(0.462007\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.56155 −0.297832
\(144\) 0 0
\(145\) −4.68466 −0.389040
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.31534 0.271603 0.135802 0.990736i \(-0.456639\pi\)
0.135802 + 0.990736i \(0.456639\pi\)
\(150\) 0 0
\(151\) 15.0000 1.22068 0.610341 0.792139i \(-0.291032\pi\)
0.610341 + 0.792139i \(0.291032\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.43845 0.195861
\(156\) 0 0
\(157\) −10.6847 −0.852729 −0.426364 0.904552i \(-0.640206\pi\)
−0.426364 + 0.904552i \(0.640206\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −16.1231 −1.26286 −0.631430 0.775433i \(-0.717532\pi\)
−0.631430 + 0.775433i \(0.717532\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.1231 1.94408 0.972042 0.234806i \(-0.0754456\pi\)
0.972042 + 0.234806i \(0.0754456\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.36932 0.104107 0.0520536 0.998644i \(-0.483423\pi\)
0.0520536 + 0.998644i \(0.483423\pi\)
\(174\) 0 0
\(175\) −0.561553 −0.0424494
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.2462 1.06481 0.532406 0.846489i \(-0.321288\pi\)
0.532406 + 0.846489i \(0.321288\pi\)
\(180\) 0 0
\(181\) −0.315342 −0.0234392 −0.0117196 0.999931i \(-0.503731\pi\)
−0.0117196 + 0.999931i \(0.503731\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.68466 0.417944
\(186\) 0 0
\(187\) −23.8078 −1.74100
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) −1.68466 −0.121264 −0.0606322 0.998160i \(-0.519312\pi\)
−0.0606322 + 0.998160i \(0.519312\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.3693 −1.09502 −0.547509 0.836800i \(-0.684424\pi\)
−0.547509 + 0.836800i \(0.684424\pi\)
\(198\) 0 0
\(199\) −7.49242 −0.531124 −0.265562 0.964094i \(-0.585557\pi\)
−0.265562 + 0.964094i \(0.585557\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.63068 0.184638
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −27.3693 −1.89318
\(210\) 0 0
\(211\) −13.6847 −0.942091 −0.471045 0.882109i \(-0.656123\pi\)
−0.471045 + 0.882109i \(0.656123\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.68466 0.319491
\(216\) 0 0
\(217\) −1.36932 −0.0929553
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.68466 0.449659
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.49242 −0.298173 −0.149086 0.988824i \(-0.547633\pi\)
−0.149086 + 0.988824i \(0.547633\pi\)
\(228\) 0 0
\(229\) 7.36932 0.486978 0.243489 0.969904i \(-0.421708\pi\)
0.243489 + 0.969904i \(0.421708\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −25.3693 −1.66200 −0.831000 0.556273i \(-0.812231\pi\)
−0.831000 + 0.556273i \(0.812231\pi\)
\(234\) 0 0
\(235\) 3.56155 0.232330
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.6155 1.52756 0.763781 0.645476i \(-0.223341\pi\)
0.763781 + 0.645476i \(0.223341\pi\)
\(240\) 0 0
\(241\) −19.0000 −1.22390 −0.611949 0.790897i \(-0.709614\pi\)
−0.611949 + 0.790897i \(0.709614\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.68466 −0.427067
\(246\) 0 0
\(247\) 7.68466 0.488963
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.8078 −1.50273 −0.751366 0.659885i \(-0.770605\pi\)
−0.751366 + 0.659885i \(0.770605\pi\)
\(252\) 0 0
\(253\) −12.6847 −0.797478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.6847 0.791247 0.395624 0.918413i \(-0.370528\pi\)
0.395624 + 0.918413i \(0.370528\pi\)
\(258\) 0 0
\(259\) −3.19224 −0.198356
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.4924 −1.01697 −0.508483 0.861072i \(-0.669794\pi\)
−0.508483 + 0.861072i \(0.669794\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.05398 0.491060 0.245530 0.969389i \(-0.421038\pi\)
0.245530 + 0.969389i \(0.421038\pi\)
\(270\) 0 0
\(271\) 19.6847 1.19576 0.597879 0.801586i \(-0.296010\pi\)
0.597879 + 0.801586i \(0.296010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.56155 0.214770
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.36932 0.558927 0.279463 0.960156i \(-0.409843\pi\)
0.279463 + 0.960156i \(0.409843\pi\)
\(282\) 0 0
\(283\) −30.7386 −1.82722 −0.913611 0.406589i \(-0.866718\pi\)
−0.913611 + 0.406589i \(0.866718\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.24621 −0.132590
\(288\) 0 0
\(289\) 27.6847 1.62851
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) 0 0
\(295\) −1.12311 −0.0653897
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.56155 0.205970
\(300\) 0 0
\(301\) −2.63068 −0.151630
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.68466 0.554542
\(306\) 0 0
\(307\) −5.06913 −0.289311 −0.144655 0.989482i \(-0.546207\pi\)
−0.144655 + 0.989482i \(0.546207\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.8769 1.29723 0.648615 0.761117i \(-0.275349\pi\)
0.648615 + 0.761117i \(0.275349\pi\)
\(312\) 0 0
\(313\) −23.0540 −1.30309 −0.651544 0.758611i \(-0.725878\pi\)
−0.651544 + 0.758611i \(0.725878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) −16.6847 −0.934162
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 51.3693 2.85827
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) 12.5616 0.690445 0.345223 0.938521i \(-0.387803\pi\)
0.345223 + 0.938521i \(0.387803\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.43845 −0.297134
\(336\) 0 0
\(337\) 23.0540 1.25583 0.627915 0.778282i \(-0.283909\pi\)
0.627915 + 0.778282i \(0.283909\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.68466 0.470301
\(342\) 0 0
\(343\) 7.68466 0.414933
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.7386 1.00594 0.502971 0.864303i \(-0.332240\pi\)
0.502971 + 0.864303i \(0.332240\pi\)
\(348\) 0 0
\(349\) 25.6847 1.37487 0.687434 0.726247i \(-0.258737\pi\)
0.687434 + 0.726247i \(0.258737\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0540 0.748018 0.374009 0.927425i \(-0.377983\pi\)
0.374009 + 0.927425i \(0.377983\pi\)
\(354\) 0 0
\(355\) 14.2462 0.756110
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.8769 0.574061 0.287030 0.957922i \(-0.407332\pi\)
0.287030 + 0.957922i \(0.407332\pi\)
\(360\) 0 0
\(361\) 40.0540 2.10810
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.6847 0.716288
\(366\) 0 0
\(367\) −29.0540 −1.51661 −0.758303 0.651903i \(-0.773971\pi\)
−0.758303 + 0.651903i \(0.773971\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.00000 0.258890 0.129445 0.991587i \(-0.458680\pi\)
0.129445 + 0.991587i \(0.458680\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.68466 0.241272
\(378\) 0 0
\(379\) −21.9309 −1.12651 −0.563257 0.826282i \(-0.690452\pi\)
−0.563257 + 0.826282i \(0.690452\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.1922 −0.622994 −0.311497 0.950247i \(-0.600830\pi\)
−0.311497 + 0.950247i \(0.600830\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −32.0540 −1.62520 −0.812601 0.582821i \(-0.801949\pi\)
−0.812601 + 0.582821i \(0.801949\pi\)
\(390\) 0 0
\(391\) 23.8078 1.20401
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.2462 0.867751
\(396\) 0 0
\(397\) −9.31534 −0.467524 −0.233762 0.972294i \(-0.575104\pi\)
−0.233762 + 0.972294i \(0.575104\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.0000 0.799002 0.399501 0.916733i \(-0.369183\pi\)
0.399501 + 0.916733i \(0.369183\pi\)
\(402\) 0 0
\(403\) −2.43845 −0.121468
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.2462 1.00357
\(408\) 0 0
\(409\) 14.3693 0.710517 0.355258 0.934768i \(-0.384393\pi\)
0.355258 + 0.934768i \(0.384393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.630683 0.0310339
\(414\) 0 0
\(415\) 4.87689 0.239397
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.4384 0.998483 0.499242 0.866463i \(-0.333612\pi\)
0.499242 + 0.866463i \(0.333612\pi\)
\(420\) 0 0
\(421\) −19.0540 −0.928634 −0.464317 0.885669i \(-0.653700\pi\)
−0.464317 + 0.885669i \(0.653700\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.68466 −0.324254
\(426\) 0 0
\(427\) −5.43845 −0.263185
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.61553 −0.270490 −0.135245 0.990812i \(-0.543182\pi\)
−0.135245 + 0.990812i \(0.543182\pi\)
\(432\) 0 0
\(433\) −20.7386 −0.996635 −0.498318 0.866995i \(-0.666049\pi\)
−0.498318 + 0.866995i \(0.666049\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27.3693 1.30925
\(438\) 0 0
\(439\) 4.49242 0.214412 0.107206 0.994237i \(-0.465810\pi\)
0.107206 + 0.994237i \(0.465810\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.2462 1.24700 0.623498 0.781825i \(-0.285711\pi\)
0.623498 + 0.781825i \(0.285711\pi\)
\(444\) 0 0
\(445\) 11.3693 0.538957
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 14.2462 0.670828
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.561553 0.0263260
\(456\) 0 0
\(457\) −31.3693 −1.46739 −0.733697 0.679476i \(-0.762207\pi\)
−0.733697 + 0.679476i \(0.762207\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 1.68466 0.0782927 0.0391464 0.999233i \(-0.487536\pi\)
0.0391464 + 0.999233i \(0.487536\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.8617 −0.919092 −0.459546 0.888154i \(-0.651988\pi\)
−0.459546 + 0.888154i \(0.651988\pi\)
\(468\) 0 0
\(469\) 3.05398 0.141019
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.6847 0.767161
\(474\) 0 0
\(475\) −7.68466 −0.352596
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −5.68466 −0.259198
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.31534 −0.105134
\(486\) 0 0
\(487\) −3.19224 −0.144654 −0.0723270 0.997381i \(-0.523043\pi\)
−0.0723270 + 0.997381i \(0.523043\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −29.6155 −1.33653 −0.668265 0.743923i \(-0.732963\pi\)
−0.668265 + 0.743923i \(0.732963\pi\)
\(492\) 0 0
\(493\) 31.3153 1.41037
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 29.4233 1.31192 0.655960 0.754796i \(-0.272264\pi\)
0.655960 + 0.754796i \(0.272264\pi\)
\(504\) 0 0
\(505\) 8.68466 0.386462
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.6847 1.71467 0.857334 0.514761i \(-0.172119\pi\)
0.857334 + 0.514761i \(0.172119\pi\)
\(510\) 0 0
\(511\) −7.68466 −0.339949
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.4384 0.504038
\(516\) 0 0
\(517\) 12.6847 0.557871
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.3693 −1.37431 −0.687157 0.726509i \(-0.741142\pi\)
−0.687157 + 0.726509i \(0.741142\pi\)
\(522\) 0 0
\(523\) 37.1080 1.62262 0.811309 0.584618i \(-0.198756\pi\)
0.811309 + 0.584618i \(0.198756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.3002 −0.710047
\(528\) 0 0
\(529\) −10.3153 −0.448493
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) 8.24621 0.356515
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −23.8078 −1.02547
\(540\) 0 0
\(541\) −9.68466 −0.416376 −0.208188 0.978089i \(-0.566757\pi\)
−0.208188 + 0.978089i \(0.566757\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.3693 −0.658349
\(546\) 0 0
\(547\) −18.3693 −0.785415 −0.392708 0.919663i \(-0.628462\pi\)
−0.392708 + 0.919663i \(0.628462\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) −9.68466 −0.411834
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.3693 0.990190 0.495095 0.868839i \(-0.335133\pi\)
0.495095 + 0.868839i \(0.335133\pi\)
\(558\) 0 0
\(559\) −4.68466 −0.198140
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 43.1231 1.81742 0.908711 0.417426i \(-0.137068\pi\)
0.908711 + 0.417426i \(0.137068\pi\)
\(564\) 0 0
\(565\) 5.31534 0.223618
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.36932 −0.308938 −0.154469 0.987998i \(-0.549367\pi\)
−0.154469 + 0.987998i \(0.549367\pi\)
\(570\) 0 0
\(571\) 35.4384 1.48305 0.741526 0.670924i \(-0.234102\pi\)
0.741526 + 0.670924i \(0.234102\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.56155 −0.148527
\(576\) 0 0
\(577\) 42.4233 1.76610 0.883052 0.469274i \(-0.155484\pi\)
0.883052 + 0.469274i \(0.155484\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.73863 −0.113618
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.00000 −0.247647 −0.123823 0.992304i \(-0.539516\pi\)
−0.123823 + 0.992304i \(0.539516\pi\)
\(588\) 0 0
\(589\) −18.7386 −0.772112
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.31534 −0.300405 −0.150203 0.988655i \(-0.547993\pi\)
−0.150203 + 0.988655i \(0.547993\pi\)
\(594\) 0 0
\(595\) 3.75379 0.153890
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.6155 −0.474598 −0.237299 0.971437i \(-0.576262\pi\)
−0.237299 + 0.971437i \(0.576262\pi\)
\(600\) 0 0
\(601\) −7.94602 −0.324125 −0.162063 0.986780i \(-0.551815\pi\)
−0.162063 + 0.986780i \(0.551815\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.68466 0.0684911
\(606\) 0 0
\(607\) −24.5616 −0.996923 −0.498461 0.866912i \(-0.666101\pi\)
−0.498461 + 0.866912i \(0.666101\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.56155 −0.144085
\(612\) 0 0
\(613\) −40.3693 −1.63050 −0.815251 0.579108i \(-0.803401\pi\)
−0.815251 + 0.579108i \(0.803401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.0539753 −0.00217296 −0.00108648 0.999999i \(-0.500346\pi\)
−0.00108648 + 0.999999i \(0.500346\pi\)
\(618\) 0 0
\(619\) −14.8078 −0.595174 −0.297587 0.954695i \(-0.596182\pi\)
−0.297587 + 0.954695i \(0.596182\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.38447 −0.255788
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −38.0000 −1.51516
\(630\) 0 0
\(631\) −11.0540 −0.440052 −0.220026 0.975494i \(-0.570614\pi\)
−0.220026 + 0.975494i \(0.570614\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.12311 0.282672
\(636\) 0 0
\(637\) 6.68466 0.264856
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −37.3693 −1.47600 −0.738000 0.674801i \(-0.764229\pi\)
−0.738000 + 0.674801i \(0.764229\pi\)
\(642\) 0 0
\(643\) 33.1771 1.30838 0.654188 0.756332i \(-0.273010\pi\)
0.654188 + 0.756332i \(0.273010\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.4924 1.59192 0.795961 0.605348i \(-0.206966\pi\)
0.795961 + 0.605348i \(0.206966\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.7386 −0.889832 −0.444916 0.895572i \(-0.646766\pi\)
−0.444916 + 0.895572i \(0.646766\pi\)
\(654\) 0 0
\(655\) 11.8078 0.461368
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.7386 1.19741 0.598704 0.800971i \(-0.295683\pi\)
0.598704 + 0.800971i \(0.295683\pi\)
\(660\) 0 0
\(661\) −21.0540 −0.818905 −0.409452 0.912331i \(-0.634280\pi\)
−0.409452 + 0.912331i \(0.634280\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.31534 0.167342
\(666\) 0 0
\(667\) 16.6847 0.646033
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 34.4924 1.33157
\(672\) 0 0
\(673\) 13.0540 0.503194 0.251597 0.967832i \(-0.419044\pi\)
0.251597 + 0.967832i \(0.419044\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.3693 0.436958 0.218479 0.975842i \(-0.429890\pi\)
0.218479 + 0.975842i \(0.429890\pi\)
\(678\) 0 0
\(679\) 1.30019 0.0498966
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 40.4924 1.54940 0.774700 0.632329i \(-0.217901\pi\)
0.774700 + 0.632329i \(0.217901\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 16.8769 0.642027 0.321014 0.947075i \(-0.395976\pi\)
0.321014 + 0.947075i \(0.395976\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.80776 0.106505
\(696\) 0 0
\(697\) −26.7386 −1.01280
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.7926 −1.31410 −0.657049 0.753848i \(-0.728196\pi\)
−0.657049 + 0.753848i \(0.728196\pi\)
\(702\) 0 0
\(703\) −43.6847 −1.64760
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.87689 −0.183414
\(708\) 0 0
\(709\) 11.6847 0.438827 0.219413 0.975632i \(-0.429586\pi\)
0.219413 + 0.975632i \(0.429586\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.68466 −0.325243
\(714\) 0 0
\(715\) −3.56155 −0.133195
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.87689 0.181877 0.0909387 0.995856i \(-0.471013\pi\)
0.0909387 + 0.995856i \(0.471013\pi\)
\(720\) 0 0
\(721\) −6.42329 −0.239216
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.68466 −0.173984
\(726\) 0 0
\(727\) −24.0000 −0.890111 −0.445055 0.895503i \(-0.646816\pi\)
−0.445055 + 0.895503i \(0.646816\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −31.3153 −1.15824
\(732\) 0 0
\(733\) −40.7386 −1.50472 −0.752358 0.658755i \(-0.771084\pi\)
−0.752358 + 0.658755i \(0.771084\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.3693 −0.713478
\(738\) 0 0
\(739\) 7.50758 0.276171 0.138085 0.990420i \(-0.455905\pi\)
0.138085 + 0.990420i \(0.455905\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −39.1771 −1.43727 −0.718634 0.695389i \(-0.755232\pi\)
−0.718634 + 0.695389i \(0.755232\pi\)
\(744\) 0 0
\(745\) 3.31534 0.121465
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.63068 −0.169201
\(750\) 0 0
\(751\) −3.73863 −0.136425 −0.0682123 0.997671i \(-0.521730\pi\)
−0.0682123 + 0.997671i \(0.521730\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.0000 0.545906
\(756\) 0 0
\(757\) −45.1080 −1.63948 −0.819738 0.572738i \(-0.805881\pi\)
−0.819738 + 0.572738i \(0.805881\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) 8.63068 0.312452
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.12311 0.0405530
\(768\) 0 0
\(769\) 15.0000 0.540914 0.270457 0.962732i \(-0.412825\pi\)
0.270457 + 0.962732i \(0.412825\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.6307 0.526229 0.263115 0.964765i \(-0.415250\pi\)
0.263115 + 0.964765i \(0.415250\pi\)
\(774\) 0 0
\(775\) 2.43845 0.0875916
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −30.7386 −1.10133
\(780\) 0 0
\(781\) 50.7386 1.81557
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.6847 −0.381352
\(786\) 0 0
\(787\) −21.7386 −0.774899 −0.387449 0.921891i \(-0.626644\pi\)
−0.387449 + 0.921891i \(0.626644\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.98485 −0.106129
\(792\) 0 0
\(793\) −9.68466 −0.343912
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.26137 0.186367 0.0931836 0.995649i \(-0.470296\pi\)
0.0931836 + 0.995649i \(0.470296\pi\)
\(798\) 0 0
\(799\) −23.8078 −0.842258
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 48.7386 1.71995
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36.0000 1.26569 0.632846 0.774277i \(-0.281886\pi\)
0.632846 + 0.774277i \(0.281886\pi\)
\(810\) 0 0
\(811\) 12.3845 0.434878 0.217439 0.976074i \(-0.430230\pi\)
0.217439 + 0.976074i \(0.430230\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.1231 −0.564768
\(816\) 0 0
\(817\) −36.0000 −1.25948
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) −53.7926 −1.87509 −0.937546 0.347861i \(-0.886908\pi\)
−0.937546 + 0.347861i \(0.886908\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.2462 −1.53859 −0.769296 0.638893i \(-0.779393\pi\)
−0.769296 + 0.638893i \(0.779393\pi\)
\(828\) 0 0
\(829\) 22.4233 0.778793 0.389397 0.921070i \(-0.372684\pi\)
0.389397 + 0.921070i \(0.372684\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 44.6847 1.54823
\(834\) 0 0
\(835\) 25.1231 0.869421
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.1231 1.07449 0.537244 0.843427i \(-0.319465\pi\)
0.537244 + 0.843427i \(0.319465\pi\)
\(840\) 0 0
\(841\) −7.05398 −0.243241
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) −0.946025 −0.0325058
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.2462 −0.694031
\(852\) 0 0
\(853\) 45.1080 1.54447 0.772233 0.635339i \(-0.219140\pi\)
0.772233 + 0.635339i \(0.219140\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.36932 0.320050 0.160025 0.987113i \(-0.448843\pi\)
0.160025 + 0.987113i \(0.448843\pi\)
\(858\) 0 0
\(859\) −6.94602 −0.236995 −0.118498 0.992954i \(-0.537808\pi\)
−0.118498 + 0.992954i \(0.537808\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.6847 −1.18068 −0.590340 0.807155i \(-0.701006\pi\)
−0.590340 + 0.807155i \(0.701006\pi\)
\(864\) 0 0
\(865\) 1.36932 0.0465582
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 61.4233 2.08364
\(870\) 0 0
\(871\) 5.43845 0.184275
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.561553 −0.0189839
\(876\) 0 0
\(877\) 11.7386 0.396385 0.198193 0.980163i \(-0.436493\pi\)
0.198193 + 0.980163i \(0.436493\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7386 0.429175 0.214588 0.976705i \(-0.431159\pi\)
0.214588 + 0.976705i \(0.431159\pi\)
\(882\) 0 0
\(883\) −25.3002 −0.851419 −0.425710 0.904860i \(-0.639975\pi\)
−0.425710 + 0.904860i \(0.639975\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.1922 0.812296 0.406148 0.913807i \(-0.366872\pi\)
0.406148 + 0.913807i \(0.366872\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −27.3693 −0.915879
\(894\) 0 0
\(895\) 14.2462 0.476198
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.4233 −0.380988
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.315342 −0.0104823
\(906\) 0 0
\(907\) 27.7386 0.921046 0.460523 0.887648i \(-0.347662\pi\)
0.460523 + 0.887648i \(0.347662\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.75379 −0.323157 −0.161579 0.986860i \(-0.551659\pi\)
−0.161579 + 0.986860i \(0.551659\pi\)
\(912\) 0 0
\(913\) 17.3693 0.574840
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.63068 −0.218964
\(918\) 0 0
\(919\) −40.6847 −1.34206 −0.671032 0.741429i \(-0.734148\pi\)
−0.671032 + 0.741429i \(0.734148\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −14.2462 −0.468920
\(924\) 0 0
\(925\) 5.68466 0.186910
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32.0000 −1.04989 −0.524943 0.851137i \(-0.675913\pi\)
−0.524943 + 0.851137i \(0.675913\pi\)
\(930\) 0 0
\(931\) 51.3693 1.68356
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −23.8078 −0.778597
\(936\) 0 0
\(937\) 26.3153 0.859685 0.429842 0.902904i \(-0.358569\pi\)
0.429842 + 0.902904i \(0.358569\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 37.4233 1.21996 0.609982 0.792415i \(-0.291177\pi\)
0.609982 + 0.792415i \(0.291177\pi\)
\(942\) 0 0
\(943\) −14.2462 −0.463920
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.7386 0.803898 0.401949 0.915662i \(-0.368333\pi\)
0.401949 + 0.915662i \(0.368333\pi\)
\(948\) 0 0
\(949\) −13.6847 −0.444223
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −37.3153 −1.20876 −0.604381 0.796695i \(-0.706580\pi\)
−0.604381 + 0.796695i \(0.706580\pi\)
\(954\) 0 0
\(955\) 18.0000 0.582466
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.36932 0.108801
\(960\) 0 0
\(961\) −25.0540 −0.808193
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.68466 −0.0542311
\(966\) 0 0
\(967\) −44.4233 −1.42856 −0.714278 0.699862i \(-0.753245\pi\)
−0.714278 + 0.699862i \(0.753245\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.69981 −0.0545496 −0.0272748 0.999628i \(-0.508683\pi\)
−0.0272748 + 0.999628i \(0.508683\pi\)
\(972\) 0 0
\(973\) −1.57671 −0.0505469
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 59.4233 1.90112 0.950560 0.310542i \(-0.100510\pi\)
0.950560 + 0.310542i \(0.100510\pi\)
\(978\) 0 0
\(979\) 40.4924 1.29414
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.17708 0.101333 0.0506666 0.998716i \(-0.483865\pi\)
0.0506666 + 0.998716i \(0.483865\pi\)
\(984\) 0 0
\(985\) −15.3693 −0.489707
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.6847 −0.530541
\(990\) 0 0
\(991\) 46.4773 1.47640 0.738200 0.674582i \(-0.235676\pi\)
0.738200 + 0.674582i \(0.235676\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.49242 −0.237526
\(996\) 0 0
\(997\) 5.31534 0.168339 0.0841693 0.996451i \(-0.473176\pi\)
0.0841693 + 0.996451i \(0.473176\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8640.2.a.di.1.1 2
3.2 odd 2 8640.2.a.cu.1.1 2
4.3 odd 2 8640.2.a.cx.1.2 2
8.3 odd 2 4320.2.a.n.1.2 2
8.5 even 2 4320.2.a.u.1.1 yes 2
12.11 even 2 8640.2.a.cj.1.2 2
24.5 odd 2 4320.2.a.be.1.1 yes 2
24.11 even 2 4320.2.a.x.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.n.1.2 2 8.3 odd 2
4320.2.a.u.1.1 yes 2 8.5 even 2
4320.2.a.x.1.2 yes 2 24.11 even 2
4320.2.a.be.1.1 yes 2 24.5 odd 2
8640.2.a.cj.1.2 2 12.11 even 2
8640.2.a.cu.1.1 2 3.2 odd 2
8640.2.a.cx.1.2 2 4.3 odd 2
8640.2.a.di.1.1 2 1.1 even 1 trivial