Properties

Label 8649.2.a
Level $8649$
Weight $2$
Character orbit 8649.a
Rep. character $\chi_{8649}(1,\cdot)$
Character field $\Q$
Dimension $372$
Newform subspaces $49$
Sturm bound $1984$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 49 \)
Sturm bound: \(1984\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8649))\).

Total New Old
Modular forms 1056 401 655
Cusp forms 929 372 557
Eisenstein series 127 29 98

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(31\)FrickeDim
\(+\)\(+\)\(+\)\(69\)
\(+\)\(-\)\(-\)\(85\)
\(-\)\(+\)\(-\)\(113\)
\(-\)\(-\)\(+\)\(105\)
Plus space\(+\)\(174\)
Minus space\(-\)\(198\)

Trace form

\( 372 q - 2 q^{2} + 354 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8} + 4 q^{10} - 4 q^{11} + 12 q^{14} + 326 q^{16} - 12 q^{19} + 2 q^{20} + 10 q^{22} - 6 q^{23} + 304 q^{25} - 4 q^{26} + 4 q^{28} + 4 q^{29} + 16 q^{32}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8649))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 31
8649.2.a.a 8649.a 1.a $1$ $69.063$ \(\Q\) \(\Q(\sqrt{-3}) \) 279.2.h.a \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-2q^{4}-4q^{7}-5q^{13}+4q^{16}-7q^{19}+\cdots\)
8649.2.a.b 8649.a 1.a $1$ $69.063$ \(\Q\) \(\Q(\sqrt{-3}) \) 279.2.h.a \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $N(\mathrm{U}(1))$ \(q-2q^{4}-4q^{7}+5q^{13}+4q^{16}-7q^{19}+\cdots\)
8649.2.a.c 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{5}) \) None 31.2.a.a \(-1\) \(0\) \(-2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}-q^{5}+(-3+2\beta )q^{7}+\cdots\)
8649.2.a.d 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{5}) \) None 2883.2.a.d \(-1\) \(0\) \(-2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}-q^{5}+(1-2\beta )q^{7}+\cdots\)
8649.2.a.e 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{5}) \) None 2883.2.a.d \(-1\) \(0\) \(-2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}-q^{5}+(1-2\beta )q^{7}+\cdots\)
8649.2.a.f 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{5}) \) None 31.2.d.a \(-1\) \(0\) \(3\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+(2-\beta )q^{5}+3q^{7}+\cdots\)
8649.2.a.g 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{5}) \) None 31.2.d.a \(-1\) \(0\) \(3\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+(2-\beta )q^{5}+3q^{7}+\cdots\)
8649.2.a.h 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{2}) \) None 93.2.e.a \(0\) \(0\) \(4\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(2+\beta )q^{5}+(-2-2\beta )q^{7}+\cdots\)
8649.2.a.i 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{2}) \) None 93.2.e.a \(0\) \(0\) \(4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(2+\beta )q^{5}+(-2-2\beta )q^{7}+\cdots\)
8649.2.a.j 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{2}) \) None 961.2.a.b \(2\) \(0\) \(0\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+4q^{7}-3q^{8}+2\beta q^{11}+\cdots\)
8649.2.a.k 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{2}) \) None 31.2.c.a \(2\) \(0\) \(-2\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(1+2\beta )q^{4}-q^{5}+(1+\beta )q^{7}+\cdots\)
8649.2.a.l 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{2}) \) None 31.2.c.a \(2\) \(0\) \(-2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(1+2\beta )q^{4}-q^{5}+(1+\beta )q^{7}+\cdots\)
8649.2.a.m 8649.a 1.a $2$ $69.063$ \(\Q(\sqrt{5}) \) None 93.2.a.a \(3\) \(0\) \(4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3\beta q^{4}+(3-2\beta )q^{5}+(-1+\cdots)q^{7}+\cdots\)
8649.2.a.n 8649.a 1.a $3$ $69.063$ 3.3.148.1 None 93.2.e.b \(0\) \(0\) \(-4\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(1-\beta _{1}-\beta _{2})q^{4}+(-2+2\beta _{1}+\cdots)q^{5}+\cdots\)
8649.2.a.o 8649.a 1.a $3$ $69.063$ 3.3.148.1 None 93.2.e.b \(0\) \(0\) \(-4\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(1-\beta _{1}-\beta _{2})q^{4}+(-2+2\beta _{1}+\cdots)q^{5}+\cdots\)
8649.2.a.p 8649.a 1.a $3$ $69.063$ 3.3.229.1 None 93.2.a.b \(0\) \(0\) \(2\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{1}+\beta _{2})q^{5}+\cdots\)
8649.2.a.q 8649.a 1.a $3$ $69.063$ 3.3.837.1 \(\Q(\sqrt{-31}) \) 961.2.a.g \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(\beta _{1}-\beta _{2})q^{5}+\cdots\)
8649.2.a.r 8649.a 1.a $4$ $69.063$ \(\Q(\sqrt{2}, \sqrt{5})\) None 961.2.a.h \(-6\) \(0\) \(0\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+3\beta _{2}q^{4}+(1-2\beta _{2}+\cdots)q^{5}+\cdots\)
8649.2.a.s 8649.a 1.a $4$ $69.063$ \(\Q(\zeta_{15})^+\) \(\Q(\sqrt{-3}) \) 279.2.y.a \(0\) \(0\) \(0\) \(4\) $+$ $+$ $N(\mathrm{U}(1))$ \(q-2q^{4}+(-2\beta _{2}-3\beta _{3})q^{7}+(-1-3\beta _{1}+\cdots)q^{13}+\cdots\)
8649.2.a.t 8649.a 1.a $4$ $69.063$ \(\Q(\zeta_{15})^+\) \(\Q(\sqrt{-3}) \) 279.2.y.a \(0\) \(0\) \(0\) \(4\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-2q^{4}+(-2\beta _{2}-3\beta _{3})q^{7}+(1+3\beta _{1}+\cdots)q^{13}+\cdots\)
8649.2.a.u 8649.a 1.a $4$ $69.063$ \(\Q(\sqrt{2}, \sqrt{5})\) None 279.2.h.e \(0\) \(0\) \(0\) \(4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{3}q^{5}+(1-\beta _{2}+\cdots)q^{7}+\cdots\)
8649.2.a.v 8649.a 1.a $4$ $69.063$ \(\Q(\sqrt{2}, \sqrt{5})\) None 279.2.h.e \(0\) \(0\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{3}q^{5}+(1-\beta _{2}+\cdots)q^{7}+\cdots\)
8649.2.a.w 8649.a 1.a $4$ $69.063$ \(\Q(\zeta_{15})^+\) None 93.2.f.a \(1\) \(0\) \(3\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{2}-\beta _{3})q^{2}+\beta _{1}q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots\)
8649.2.a.x 8649.a 1.a $4$ $69.063$ \(\Q(\zeta_{15})^+\) None 93.2.f.a \(1\) \(0\) \(3\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{2}-\beta _{3})q^{2}+\beta _{1}q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots\)
8649.2.a.y 8649.a 1.a $4$ $69.063$ 4.4.8768.1 None 2883.2.a.i \(2\) \(0\) \(-4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{1}+\beta _{2})q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots\)
8649.2.a.z 8649.a 1.a $4$ $69.063$ 4.4.8768.1 None 2883.2.a.i \(2\) \(0\) \(-4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{1}+\beta _{2})q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots\)
8649.2.a.ba 8649.a 1.a $6$ $69.063$ 6.6.1389928896.1 \(\Q(\sqrt{-31}) \) 8649.2.a.ba \(0\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(\beta _{1}+\beta _{5})q^{5}+\cdots\)
8649.2.a.bb 8649.a 1.a $6$ $69.063$ 6.6.361944768.1 None 279.2.a.d \(0\) \(0\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{3})q^{4}-\beta _{2}q^{5}+(1+\beta _{5})q^{7}+\cdots\)
8649.2.a.bc 8649.a 1.a $8$ $69.063$ 8.8.1413480448.1 None 2883.2.a.q \(-4\) \(0\) \(0\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{7})q^{2}+(-1-\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
8649.2.a.bd 8649.a 1.a $8$ $69.063$ 8.8.1413480448.1 None 2883.2.a.q \(-4\) \(0\) \(0\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{7})q^{2}+(-1-\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
8649.2.a.be 8649.a 1.a $8$ $69.063$ 8.8.2051578125.1 None 31.2.g.a \(-2\) \(0\) \(-3\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3}+\beta _{5})q^{2}+(1+\beta _{1}-\beta _{6}+\cdots)q^{4}+\cdots\)
8649.2.a.bf 8649.a 1.a $8$ $69.063$ 8.8.2051578125.1 None 31.2.g.a \(-2\) \(0\) \(-3\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3}+\beta _{5})q^{2}+(1+\beta _{1}-\beta _{6}+\cdots)q^{4}+\cdots\)
8649.2.a.bg 8649.a 1.a $8$ $69.063$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 93.2.f.b \(-1\) \(0\) \(-3\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{7}+\cdots\)
8649.2.a.bh 8649.a 1.a $8$ $69.063$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 93.2.f.b \(-1\) \(0\) \(-3\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{7}+\cdots\)
8649.2.a.bi 8649.a 1.a $8$ $69.063$ 8.8.1697203125.1 None 93.2.m.a \(5\) \(0\) \(6\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{2}+\beta _{3})q^{4}+(1+\cdots)q^{5}+\cdots\)
8649.2.a.bj 8649.a 1.a $8$ $69.063$ 8.8.1697203125.1 None 93.2.m.a \(5\) \(0\) \(6\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{2}+\beta _{3})q^{4}+(1+\cdots)q^{5}+\cdots\)
8649.2.a.bk 8649.a 1.a $12$ $69.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 93.2.m.b \(-5\) \(0\) \(-6\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{1}+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
8649.2.a.bl 8649.a 1.a $12$ $69.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 93.2.m.b \(-5\) \(0\) \(-6\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{1}+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
8649.2.a.bm 8649.a 1.a $12$ $69.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 8649.2.a.bm \(0\) \(0\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{7})q^{4}+(-\beta _{1}+\beta _{5}+\cdots)q^{5}+\cdots\)
8649.2.a.bn 8649.a 1.a $12$ $69.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 279.2.i.d \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{10}q^{5}+\beta _{6}q^{7}+\cdots\)
8649.2.a.bo 8649.a 1.a $12$ $69.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 279.2.i.d \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{10}q^{5}+\beta _{6}q^{7}+\cdots\)
8649.2.a.bp 8649.a 1.a $12$ $69.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 961.2.a.k \(0\) \(0\) \(-8\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{8}q^{2}+(1+\beta _{11})q^{4}+(-1+\beta _{3}+\cdots)q^{5}+\cdots\)
8649.2.a.bq 8649.a 1.a $16$ $69.063$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 279.2.y.e \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{8}q^{5}+(1-\beta _{4}+\cdots)q^{7}+\cdots\)
8649.2.a.br 8649.a 1.a $16$ $69.063$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 279.2.y.e \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{8}q^{5}+(1-\beta _{4}+\cdots)q^{7}+\cdots\)
8649.2.a.bs 8649.a 1.a $16$ $69.063$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 961.2.a.l \(8\) \(0\) \(16\) \(-16\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{8}-\beta _{13})q^{2}+(-\beta _{4}+\beta _{15})q^{4}+\cdots\)
8649.2.a.bt 8649.a 1.a $24$ $69.063$ None 8649.2.a.bt \(0\) \(0\) \(0\) \(16\) $+$ $-$ $\mathrm{SU}(2)$
8649.2.a.bu 8649.a 1.a $24$ $69.063$ None 2883.2.a.u \(0\) \(0\) \(0\) \(16\) $-$ $+$ $\mathrm{SU}(2)$
8649.2.a.bv 8649.a 1.a $24$ $69.063$ None 2883.2.a.u \(0\) \(0\) \(0\) \(16\) $-$ $+$ $\mathrm{SU}(2)$
8649.2.a.bw 8649.a 1.a $32$ $69.063$ None 8649.2.a.bw \(0\) \(0\) \(0\) \(-32\) $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8649))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8649)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(279))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(961))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2883))\)\(^{\oplus 2}\)