Defining parameters
Level: | \( N \) | \(=\) | \( 8649 = 3^{2} \cdot 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8649.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 49 \) | ||
Sturm bound: | \(1984\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8649))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1056 | 401 | 655 |
Cusp forms | 929 | 372 | 557 |
Eisenstein series | 127 | 29 | 98 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(31\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(69\) |
\(+\) | \(-\) | \(-\) | \(85\) |
\(-\) | \(+\) | \(-\) | \(113\) |
\(-\) | \(-\) | \(+\) | \(105\) |
Plus space | \(+\) | \(174\) | |
Minus space | \(-\) | \(198\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8649))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8649))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8649)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(279))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(961))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2883))\)\(^{\oplus 2}\)