Properties

Label 867.1
Level 867
Weight 1
Dimension 16
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 55488
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(55488\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(867))\).

Total New Old
Modular forms 816 385 431
Cusp forms 16 16 0
Eisenstein series 800 369 431

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 16 q^{52}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(867))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
867.1.b \(\chi_{867}(290, \cdot)\) 867.1.b.a 1 1
867.1.b.b 1
867.1.c \(\chi_{867}(866, \cdot)\) 867.1.c.a 2 1
867.1.f \(\chi_{867}(38, \cdot)\) 867.1.f.a 4 2
867.1.g \(\chi_{867}(110, \cdot)\) 867.1.g.a 8 4
867.1.j \(\chi_{867}(40, \cdot)\) None 0 8
867.1.m \(\chi_{867}(50, \cdot)\) None 0 16
867.1.n \(\chi_{867}(35, \cdot)\) None 0 16
867.1.o \(\chi_{867}(47, \cdot)\) None 0 32
867.1.r \(\chi_{867}(2, \cdot)\) None 0 64
867.1.s \(\chi_{867}(7, \cdot)\) None 0 128