Properties

Label 867.4.q
Level $867$
Weight $4$
Character orbit 867.q
Rep. character $\chi_{867}(19,\cdot)$
Character field $\Q(\zeta_{136})$
Dimension $9856$
Sturm bound $408$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.q (of order \(136\) and degree \(64\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 289 \)
Character field: \(\Q(\zeta_{136})\)
Sturm bound: \(408\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(867, [\chi])\).

Total New Old
Modular forms 19712 9856 9856
Cusp forms 19456 9856 9600
Eisenstein series 256 0 256

Trace form

\( 9856 q - 32 q^{5} + 24 q^{6} - 128 q^{10} - 112 q^{11} - 256 q^{14} + 10240 q^{16} + 112 q^{17} + 32 q^{19} + 640 q^{20} - 728 q^{22} - 208 q^{23} - 456 q^{24} - 296 q^{25} - 1472 q^{26} + 328 q^{28} + 1272 q^{29}+ \cdots - 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(867, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(867, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(867, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 2}\)