Properties

Label 875.2.bb
Level $875$
Weight $2$
Character orbit 875.bb
Rep. character $\chi_{875}(82,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $864$
Newform subspaces $3$
Sturm bound $200$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 175 \)
Character field: \(\Q(\zeta_{60})\)
Newform subspaces: \( 3 \)
Sturm bound: \(200\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(875, [\chi])\).

Total New Old
Modular forms 1760 1056 704
Cusp forms 1440 864 576
Eisenstein series 320 192 128

Trace form

\( 864 q + 8 q^{2} + 24 q^{3} + 10 q^{4} + 10 q^{7} + 36 q^{8} + 10 q^{9} - 18 q^{11} + 36 q^{12} + 20 q^{14} - 90 q^{16} + 42 q^{17} + 14 q^{18} + 30 q^{19} - 36 q^{21} - 32 q^{22} + 40 q^{23} - 144 q^{26}+ \cdots - 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(875, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
875.2.bb.a 875.bb 175.x $288$ $6.987$ None 175.2.x.a \(-2\) \(-6\) \(0\) \(10\) $\mathrm{SU}(2)[C_{60}]$
875.2.bb.b 875.bb 175.x $288$ $6.987$ None 175.2.x.a \(2\) \(6\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{60}]$
875.2.bb.c 875.bb 175.x $288$ $6.987$ None 175.2.x.a \(8\) \(24\) \(0\) \(10\) $\mathrm{SU}(2)[C_{60}]$

Decomposition of \(S_{2}^{\mathrm{old}}(875, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(875, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)