Defining parameters
Level: | \( N \) | \(=\) | \( 875 = 5^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 875.bb (of order \(60\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 175 \) |
Character field: | \(\Q(\zeta_{60})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(200\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(875, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1760 | 1056 | 704 |
Cusp forms | 1440 | 864 | 576 |
Eisenstein series | 320 | 192 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(875, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
875.2.bb.a | $288$ | $6.987$ | None | \(-2\) | \(-6\) | \(0\) | \(10\) | ||
875.2.bb.b | $288$ | $6.987$ | None | \(2\) | \(6\) | \(0\) | \(-10\) | ||
875.2.bb.c | $288$ | $6.987$ | None | \(8\) | \(24\) | \(0\) | \(10\) |
Decomposition of \(S_{2}^{\mathrm{old}}(875, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(875, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)