Properties

Label 8800.2.dj
Level 88008800
Weight 22
Character orbit 8800.dj
Rep. character χ8800(799,)\chi_{8800}(799,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 864864
Sturm bound 28802880

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 8800=255211 8800 = 2^{5} \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8800.dj (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 220 220
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 28802880

Dimensions

The following table gives the dimensions of various subspaces of M2(8800,[χ])M_{2}(8800, [\chi]).

Total New Old
Modular forms 5952 864 5088
Cusp forms 5568 864 4704
Eisenstein series 384 0 384

Decomposition of S2new(8800,[χ])S_{2}^{\mathrm{new}}(8800, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(8800,[χ])S_{2}^{\mathrm{old}}(8800, [\chi]) into lower level spaces

S2old(8800,[χ]) S_{2}^{\mathrm{old}}(8800, [\chi]) \simeq S2new(220,[χ])S_{2}^{\mathrm{new}}(220, [\chi])8^{\oplus 8}\oplusS2new(880,[χ])S_{2}^{\mathrm{new}}(880, [\chi])4^{\oplus 4}\oplusS2new(1100,[χ])S_{2}^{\mathrm{new}}(1100, [\chi])4^{\oplus 4}\oplusS2new(1760,[χ])S_{2}^{\mathrm{new}}(1760, [\chi])2^{\oplus 2}\oplusS2new(4400,[χ])S_{2}^{\mathrm{new}}(4400, [\chi])2^{\oplus 2}