Defining parameters
Level: | \( N \) | \(=\) | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 882.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 50 \) | ||
Sturm bound: | \(1008\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(882))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 872 | 85 | 787 |
Cusp forms | 808 | 85 | 723 |
Eisenstein series | 64 | 0 | 64 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(8\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(13\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(13\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(11\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(14\) |
Plus space | \(+\) | \(41\) | ||
Minus space | \(-\) | \(44\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(882))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(882)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 2}\)