Properties

Label 882.6.bk
Level $882$
Weight $6$
Character orbit 882.bk
Rep. character $\chi_{882}(5,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $3360$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.bk (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 441 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(882, [\chi])\).

Total New Old
Modular forms 10128 3360 6768
Cusp forms 10032 3360 6672
Eisenstein series 96 0 96

Trace form

\( 3360 q + 8960 q^{4} - 280 q^{6} - 58 q^{7} - 950 q^{9} + 1086 q^{13} - 120 q^{14} + 1086 q^{15} - 143360 q^{16} - 1602 q^{17} + 992 q^{18} - 3444 q^{21} - 198 q^{23} + 175000 q^{25} + 10032 q^{26} - 51864 q^{27}+ \cdots + 1881938 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(882, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(882, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(882, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)