Properties

Label 882.6.bl
Level $882$
Weight $6$
Character orbit 882.bl
Rep. character $\chi_{882}(17,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $1104$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(882, [\chi])\).

Total New Old
Modular forms 10176 1104 9072
Cusp forms 9984 1104 8880
Eisenstein series 192 0 192

Trace form

\( 1104 q - 1472 q^{4} + 156 q^{7} + 1488 q^{10} + 23552 q^{16} + 5304 q^{19} - 7120 q^{22} + 51136 q^{25} - 6336 q^{28} + 38412 q^{31} - 18128 q^{37} - 87296 q^{40} + 17296 q^{43} + 411220 q^{49} - 76160 q^{52}+ \cdots - 302912 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(882, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(882, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(882, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)