Properties

Label 882.6.v
Level $882$
Weight $6$
Character orbit 882.v
Rep. character $\chi_{882}(125,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $576$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.v (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{14})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(882, [\chi])\).

Total New Old
Modular forms 5088 576 4512
Cusp forms 4992 576 4416
Eisenstein series 96 0 96

Trace form

\( 576 q + 1536 q^{4} - 272 q^{7} - 24576 q^{16} + 7120 q^{22} - 72728 q^{25} + 4352 q^{28} + 75324 q^{37} - 55552 q^{40} + 24760 q^{43} + 192832 q^{49} + 75712 q^{52} - 215572 q^{55} - 178160 q^{58} + 180068 q^{61}+ \cdots - 256480 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(882, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(882, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(882, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)