Defining parameters
Level: | \( N \) | \(=\) | \( 8820 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8820.by (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 315 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(4032\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8820, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4128 | 480 | 3648 |
Cusp forms | 3936 | 480 | 3456 |
Eisenstein series | 192 | 0 | 192 |
Decomposition of \(S_{2}^{\mathrm{new}}(8820, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8820, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1260, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2205, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4410, [\chi])\)\(^{\oplus 2}\)