Properties

Label 890.2.d
Level 890890
Weight 22
Character orbit 890.d
Rep. character χ890(889,)\chi_{890}(889,\cdot)
Character field Q\Q
Dimension 4444
Newform subspaces 44
Sturm bound 270270
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 890=2589 890 = 2 \cdot 5 \cdot 89
Weight: k k == 2 2
Character orbit: [χ][\chi] == 890.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 445 445
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 270270
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(890,[χ])M_{2}(890, [\chi]).

Total New Old
Modular forms 140 44 96
Cusp forms 132 44 88
Eisenstein series 8 0 8

Trace form

44q44q4+4q5+44q9+4q10+44q164q20+8q21+8q258q3444q36+40q394q4020q45+36q4924q5544q64+8q6964q71++24q99+O(q100) 44 q - 44 q^{4} + 4 q^{5} + 44 q^{9} + 4 q^{10} + 44 q^{16} - 4 q^{20} + 8 q^{21} + 8 q^{25} - 8 q^{34} - 44 q^{36} + 40 q^{39} - 4 q^{40} - 20 q^{45} + 36 q^{49} - 24 q^{55} - 44 q^{64} + 8 q^{69} - 64 q^{71}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(890,[χ])S_{2}^{\mathrm{new}}(890, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
890.2.d.a 890.d 445.c 22 7.1077.107 Q(1)\Q(\sqrt{-1}) None 890.2.d.a 00 2-2 4-4 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+iq2q3q4+(i2)q5iq6+q+i q^{2}-q^{3}-q^{4}+(i-2)q^{5}-i q^{6}+\cdots
890.2.d.b 890.d 445.c 22 7.1077.107 Q(1)\Q(\sqrt{-1}) None 890.2.d.a 00 22 4-4 44 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+iq2+q3q4+(i2)q5+iq6+q+i q^{2}+q^{3}-q^{4}+(i-2)q^{5}+i q^{6}+\cdots
890.2.d.c 890.d 445.c 44 7.1077.107 Q(i,10)\Q(i, \sqrt{10}) None 890.2.d.c 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2β3q3q4+(12β1)q5+q+\beta _{1}q^{2}-\beta _{3}q^{3}-q^{4}+(1-2\beta _{1})q^{5}+\cdots
890.2.d.d 890.d 445.c 3636 7.1077.107 None 890.2.d.d 00 00 88 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S2old(890,[χ])S_{2}^{\mathrm{old}}(890, [\chi]) into lower level spaces

S2old(890,[χ]) S_{2}^{\mathrm{old}}(890, [\chi]) \simeq S2new(445,[χ])S_{2}^{\mathrm{new}}(445, [\chi])2^{\oplus 2}