Defining parameters
Level: | \( N \) | \(=\) | \( 891 = 3^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 891.n (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 99 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(891, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 960 | 400 | 560 |
Cusp forms | 768 | 368 | 400 |
Eisenstein series | 192 | 32 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(891, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(891, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(891, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(297, [\chi])\)\(^{\oplus 2}\)