Properties

Label 891.2.n
Level $891$
Weight $2$
Character orbit 891.n
Rep. character $\chi_{891}(136,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $368$
Newform subspaces $12$
Sturm bound $216$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 12 \)
Sturm bound: \(216\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(891, [\chi])\).

Total New Old
Modular forms 960 400 560
Cusp forms 768 368 400
Eisenstein series 192 32 160

Trace form

\( 368 q + 50 q^{4} + 6 q^{7} - 16 q^{10} + 6 q^{13} + 38 q^{16} - 48 q^{19} - 2 q^{22} + 38 q^{25} + 36 q^{28} - 4 q^{34} + 2 q^{40} + 4 q^{43} - 36 q^{46} + 40 q^{49} - 18 q^{52} - 56 q^{55} - 92 q^{58}+ \cdots + 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(891, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
891.2.n.a 891.n 99.m $8$ $7.115$ \(\Q(\zeta_{15})\) None 33.2.e.a \(-3\) \(0\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\zeta_{15}^{2}+\zeta_{15}^{5})q^{2}+(-1+\zeta_{15}^{4}+\cdots)q^{4}+\cdots\)
891.2.n.b 891.n 99.m $8$ $7.115$ \(\Q(\zeta_{15})\) None 33.2.e.b \(-1\) \(0\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-2\zeta_{15}+\zeta_{15}^{2}+\zeta_{15}^{5}-2\zeta_{15}^{6}+\cdots)q^{2}+\cdots\)
891.2.n.c 891.n 99.m $8$ $7.115$ \(\Q(\zeta_{15})\) None 33.2.e.b \(1\) \(0\) \(3\) \(-1\) $\mathrm{SU}(2)[C_{15}]$ \(q+(2\zeta_{15}-\zeta_{15}^{2}-\zeta_{15}^{5}+2\zeta_{15}^{6}+\cdots)q^{2}+\cdots\)
891.2.n.d 891.n 99.m $8$ $7.115$ \(\Q(\zeta_{15})\) None 33.2.e.a \(3\) \(0\) \(1\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-\zeta_{15}^{2}-\zeta_{15}^{5})q^{2}+(-1+\zeta_{15}^{4}+\cdots)q^{4}+\cdots\)
891.2.n.e 891.n 99.m $16$ $7.115$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 99.2.f.c \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{15}]$ \(q+\beta _{1}q^{2}+(2\beta _{2}-\beta _{9}-\beta _{11})q^{4}-\beta _{13}q^{5}+\cdots\)
891.2.n.f 891.n 99.m $32$ $7.115$ None 297.2.f.a \(-2\) \(0\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{15}]$
891.2.n.g 891.n 99.m $32$ $7.115$ None 297.2.f.c \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{15}]$
891.2.n.h 891.n 99.m $32$ $7.115$ None 297.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{15}]$
891.2.n.i 891.n 99.m $32$ $7.115$ None 297.2.f.a \(2\) \(0\) \(1\) \(2\) $\mathrm{SU}(2)[C_{15}]$
891.2.n.j 891.n 99.m $48$ $7.115$ None 891.2.f.c \(-2\) \(0\) \(4\) \(-7\) $\mathrm{SU}(2)[C_{15}]$
891.2.n.k 891.n 99.m $48$ $7.115$ None 891.2.f.c \(2\) \(0\) \(-4\) \(-7\) $\mathrm{SU}(2)[C_{15}]$
891.2.n.l 891.n 99.m $96$ $7.115$ None 891.2.f.g \(0\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{15}]$

Decomposition of \(S_{2}^{\mathrm{old}}(891, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(891, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(297, [\chi])\)\(^{\oplus 2}\)