Defining parameters
Level: | \( N \) | \(=\) | \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8925.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 76 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(2\), \(11\), \(13\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8925))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1464 | 304 | 1160 |
Cusp forms | 1417 | 304 | 1113 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(7\) | \(17\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(16\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(17\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(22\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(17\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(20\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(22\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(16\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(22\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(17\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(16\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(17\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(22\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(22\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(20\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(22\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(16\) |
Plus space | \(+\) | \(142\) | |||
Minus space | \(-\) | \(162\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8925))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8925))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8925)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1785))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2975))\)\(^{\oplus 2}\)