Defining parameters
Level: | \( N \) | \(=\) | \( 896 = 2^{7} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 896.bi (of order \(24\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 224 \) |
Character field: | \(\Q(\zeta_{24})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(896, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1088 | 272 | 816 |
Cusp forms | 960 | 240 | 720 |
Eisenstein series | 128 | 32 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(896, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
896.2.bi.a | $240$ | $7.155$ | None | \(0\) | \(12\) | \(-12\) | \(8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(896, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(896, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 3}\)