Properties

Label 896.2.bi
Level $896$
Weight $2$
Character orbit 896.bi
Rep. character $\chi_{896}(47,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $240$
Newform subspaces $1$
Sturm bound $256$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.bi (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 224 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(256\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(896, [\chi])\).

Total New Old
Modular forms 1088 272 816
Cusp forms 960 240 720
Eisenstein series 128 32 96

Trace form

\( 240 q + 12 q^{3} - 12 q^{5} + 8 q^{7} - 4 q^{9} + 4 q^{11} + 32 q^{15} + 12 q^{19} - 8 q^{21} - 4 q^{23} - 4 q^{25} - 16 q^{29} - 24 q^{33} + 32 q^{35} - 4 q^{37} + 4 q^{39} + 32 q^{43} - 48 q^{45} + 24 q^{47}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(896, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
896.2.bi.a 896.bi 224.ae $240$ $7.155$ None 224.2.be.a \(0\) \(12\) \(-12\) \(8\) $\mathrm{SU}(2)[C_{24}]$

Decomposition of \(S_{2}^{\mathrm{old}}(896, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(896, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 3}\)