Defining parameters
Level: | \( N \) | \(=\) | \( 8967 = 3 \cdot 7^{2} \cdot 61 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8967.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 44 \) | ||
Sturm bound: | \(2314\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8967))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1172 | 410 | 762 |
Cusp forms | 1141 | 410 | 731 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(61\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(45\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(55\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(54\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(51\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(61\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(39\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(42\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(63\) |
Plus space | \(+\) | \(177\) | ||
Minus space | \(-\) | \(233\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8967))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8967))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8967)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(61))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(183))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(427))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1281))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2989))\)\(^{\oplus 2}\)