Properties

Label 9.12.a
Level $9$
Weight $12$
Character orbit 9.a
Rep. character $\chi_{9}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $3$
Sturm bound $12$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(12\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(9))\).

Total New Old
Modular forms 13 5 8
Cusp forms 9 4 5
Eisenstein series 4 1 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(2\)
\(-\)\(2\)

Trace form

\( 4 q - 54 q^{2} + 3508 q^{4} + 540 q^{5} + 71696 q^{7} - 239544 q^{8} + 594180 q^{10} - 1172448 q^{11} + 1713776 q^{13} + 1763424 q^{14} - 5059952 q^{16} + 3821580 q^{17} - 29453392 q^{19} + 28783080 q^{20}+ \cdots + 53396148186 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
9.12.a.a 9.a 1.a $1$ $6.915$ \(\Q\) None 3.12.a.a \(-78\) \(0\) \(5370\) \(-27760\) $-$ $\mathrm{SU}(2)$ \(q-78q^{2}+4036q^{4}+5370q^{5}-27760q^{7}+\cdots\)
9.12.a.b 9.a 1.a $1$ $6.915$ \(\Q\) None 1.12.a.a \(24\) \(0\) \(-4830\) \(-16744\) $-$ $\mathrm{SU}(2)$ \(q+24q^{2}-1472q^{4}-4830q^{5}-16744q^{7}+\cdots\)
9.12.a.c 9.a 1.a $2$ $6.915$ \(\Q(\sqrt{70}) \) None 9.12.a.c \(0\) \(0\) \(0\) \(116200\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+472q^{4}+224\beta q^{5}+58100q^{7}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)