Properties

Label 9.14.a
Level $9$
Weight $14$
Character orbit 9.a
Rep. character $\chi_{9}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $14$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(14\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(9))\).

Total New Old
Modular forms 15 6 9
Cusp forms 11 5 6
Eisenstein series 4 1 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(2\)
\(-\)\(3\)

Trace form

\( 5 q + 66 q^{2} + 11924 q^{4} - 10506 q^{5} - 52520 q^{7} + 1830552 q^{8} - 4437036 q^{10} + 10510500 q^{11} - 35372882 q^{13} + 124741392 q^{14} - 54505456 q^{16} + 33656058 q^{17} + 205818292 q^{19} - 415819704 q^{20}+ \cdots + 3130819722738 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
9.14.a.a 9.a 1.a $1$ $9.651$ \(\Q\) None 3.14.a.a \(12\) \(0\) \(30210\) \(235088\) $-$ $\mathrm{SU}(2)$ \(q+12q^{2}-8048q^{4}+30210q^{5}+235088q^{7}+\cdots\)
9.14.a.b 9.a 1.a $2$ $9.651$ \(\Q(\sqrt{55}) \) None 9.14.a.b \(0\) \(0\) \(0\) \(-266600\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-272q^{4}-520\beta q^{5}-133300q^{7}+\cdots\)
9.14.a.c 9.a 1.a $2$ $9.651$ \(\Q(\sqrt{1969}) \) None 3.14.a.b \(54\) \(0\) \(-40716\) \(-21008\) $-$ $\mathrm{SU}(2)$ \(q+(3^{3}-\beta )q^{2}+(10258-54\beta )q^{4}+(-20358+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)