Defining parameters
Level: | \( N \) | \(=\) | \( 9 = 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 9.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(9))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15 | 6 | 9 |
Cusp forms | 11 | 5 | 6 |
Eisenstein series | 4 | 1 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
9.14.a.a | $1$ | $9.651$ | \(\Q\) | None | \(12\) | \(0\) | \(30210\) | \(235088\) | $-$ | \(q+12q^{2}-8048q^{4}+30210q^{5}+235088q^{7}+\cdots\) | |
9.14.a.b | $2$ | $9.651$ | \(\Q(\sqrt{55}) \) | None | \(0\) | \(0\) | \(0\) | \(-266600\) | $+$ | \(q+\beta q^{2}-272q^{4}-520\beta q^{5}-133300q^{7}+\cdots\) | |
9.14.a.c | $2$ | $9.651$ | \(\Q(\sqrt{1969}) \) | None | \(54\) | \(0\) | \(-40716\) | \(-21008\) | $-$ | \(q+(3^{3}-\beta )q^{2}+(10258-54\beta )q^{4}+(-20358+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces
\( S_{14}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)