Properties

Label 9.22
Level 9
Weight 22
Dimension 48
Nonzero newspaces 2
Newform subspaces 7
Sturm bound 132
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 7 \)
Sturm bound: \(132\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(9))\).

Total New Old
Modular forms 67 53 14
Cusp forms 59 48 11
Eisenstein series 8 5 3

Trace form

\( 48 q + 1761 q^{2} + 128841 q^{3} - 12173037 q^{4} + 47999847 q^{5} + 187115031 q^{6} - 290151387 q^{7} + 8255204778 q^{8} + 10117230687 q^{9} - 16895949936 q^{10} + 70455589638 q^{11} - 287594221404 q^{12}+ \cdots + 16\!\cdots\!41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.22.a \(\chi_{9}(1, \cdot)\) 9.22.a.a 1 1
9.22.a.b 1
9.22.a.c 1
9.22.a.d 1
9.22.a.e 2
9.22.a.f 2
9.22.c \(\chi_{9}(4, \cdot)\) 9.22.c.a 40 2

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 1}\)