Properties

Label 90.16
Level 90
Weight 16
Dimension 783
Nonzero newspaces 6
Sturm bound 6912
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(6912\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(90))\).

Total New Old
Modular forms 3304 783 2521
Cusp forms 3176 783 2393
Eisenstein series 128 0 128

Trace form

\( 783 q - 384 q^{2} + 8130 q^{3} + 278528 q^{4} + 9833 q^{5} + 2638080 q^{6} - 10097692 q^{7} + 6291456 q^{8} - 85912694 q^{9} - 90699904 q^{10} + 328928398 q^{11} - 219348992 q^{12} - 33669910 q^{13} + 714884608 q^{14}+ \cdots + 52\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(90))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
90.16.a \(\chi_{90}(1, \cdot)\) 90.16.a.a 1 1
90.16.a.b 1
90.16.a.c 1
90.16.a.d 1
90.16.a.e 1
90.16.a.f 1
90.16.a.g 1
90.16.a.h 1
90.16.a.i 1
90.16.a.j 2
90.16.a.k 2
90.16.a.l 2
90.16.a.m 2
90.16.a.n 2
90.16.a.o 3
90.16.a.p 3
90.16.c \(\chi_{90}(19, \cdot)\) 90.16.c.a 2 1
90.16.c.b 4
90.16.c.c 8
90.16.c.d 8
90.16.c.e 16
90.16.e \(\chi_{90}(31, \cdot)\) n/a 120 2
90.16.f \(\chi_{90}(17, \cdot)\) 90.16.f.a 28 2
90.16.f.b 32
90.16.i \(\chi_{90}(49, \cdot)\) n/a 180 2
90.16.l \(\chi_{90}(23, \cdot)\) n/a 360 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(90))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(90)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)