Defining parameters
Level: | \( N \) | = | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | = | \( 16 \) |
Nonzero newspaces: | \( 6 \) | ||
Sturm bound: | \(6912\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(90))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3304 | 783 | 2521 |
Cusp forms | 3176 | 783 | 2393 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(90))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
90.16.a | \(\chi_{90}(1, \cdot)\) | 90.16.a.a | 1 | 1 |
90.16.a.b | 1 | |||
90.16.a.c | 1 | |||
90.16.a.d | 1 | |||
90.16.a.e | 1 | |||
90.16.a.f | 1 | |||
90.16.a.g | 1 | |||
90.16.a.h | 1 | |||
90.16.a.i | 1 | |||
90.16.a.j | 2 | |||
90.16.a.k | 2 | |||
90.16.a.l | 2 | |||
90.16.a.m | 2 | |||
90.16.a.n | 2 | |||
90.16.a.o | 3 | |||
90.16.a.p | 3 | |||
90.16.c | \(\chi_{90}(19, \cdot)\) | 90.16.c.a | 2 | 1 |
90.16.c.b | 4 | |||
90.16.c.c | 8 | |||
90.16.c.d | 8 | |||
90.16.c.e | 16 | |||
90.16.e | \(\chi_{90}(31, \cdot)\) | n/a | 120 | 2 |
90.16.f | \(\chi_{90}(17, \cdot)\) | 90.16.f.a | 28 | 2 |
90.16.f.b | 32 | |||
90.16.i | \(\chi_{90}(49, \cdot)\) | n/a | 180 | 2 |
90.16.l | \(\chi_{90}(23, \cdot)\) | n/a | 360 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(90))\) into lower level spaces
\( S_{16}^{\mathrm{old}}(\Gamma_1(90)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)