Defining parameters
Level: | \( N \) | \(=\) | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 900.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(900, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 204 | 38 | 166 |
Cusp forms | 156 | 38 | 118 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(900, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(900, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)