Defining parameters
Level: | \( N \) | \(=\) | \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9075.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(2640\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9075, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1392 | 328 | 1064 |
Cusp forms | 1248 | 328 | 920 |
Eisenstein series | 144 | 0 | 144 |
Decomposition of \(S_{2}^{\mathrm{new}}(9075, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(9075, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9075, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(825, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1815, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3025, [\chi])\)\(^{\oplus 2}\)